首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley is an abundant crop in Europe, which makes its straw residues an interesting cellulose source for ethanol production. Steam pretreatment of the straw followed by enzymatic hydrolysis converts the cellulose to fermentable sugars. Prior to pretreatment the material is impregnated with a catalyst, for example, H2SO4, to enhance enzymatic digestibility of the pretreated straw. Different impregnation techniques can be applied. In this study, soaking and spraying were investigated and compared at the same pretreatment condition in terms of overall yield of glucose and xylose. The overall yield includes the soluble sugars in the liquid from pretreatment, including soluble oligomers, and monomer sugars obtained in the enzymatic hydrolysis. The yields obtained differed for the impregnation techniques. Acid-soaked barley straw gave the highest overall yield of glucose, regardless of impregnation time (10 or 30 min) or acid concentration (0.2 or 1.0 wt%). For xylose, soaking gave the highest overall yield at 0.2 wt% H2SO4. An increase in acid concentration resulted in a decrease in xylose yield for both acid-soaked and acid-sprayed barley straw. Optimization of the pretreatment conditions for acid-sprayed barley straw was performed to obtain yields using spraying that were as high as those with soaking. For acid-sprayed barley straw the optimum pretreatment condition for glucose, 1.0 wt% H2SO4 and 220°C for 5 min, gave an overall glucose yield of 92% of theoretical based on the composition of the raw material. Pretreatment with 0.2wt% H2SO4 at 190°C for 5 min resulted in the highest overall xylose yield, 67% of theoretical based on the composition of the raw material.  相似文献   

2.
Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.  相似文献   

3.
The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121°C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0–10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digetibility. Hemicellulose recovery was 62–90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10–20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification.  相似文献   

4.
The fermentable sugars in lignocellulosic biomass are derived from cellulose and hemicellulose, which are not readily accessible to enzymatic saccharification because of their recalcitrance. An ethanosolv pretreatment method was applied for the enzymatic saccharification of barley straw with an inorganic acid. The effects of four process variables (temperature, time, catalyst dose, and ethanol concentration) on the barley straw pretreatment were analyzed over a broad range using a small composite design and a response surface methodology. The yield of the residual solid and composition of the solid fraction differed as ethanosolv conditions varied within the experimental range. A glucan recovery, xylan recovery, and delignification were 85%, 14%, and 69% at center point conditions (170°C, 60 min, 1.0% (w/w) H2SO4, and 50% (w/w) ethanol), respectively. Ethanosolv pretreatment removed lignin effectively. Additionally, the highest enzymatic digestibility of 85.3% was obtained after 72 h at center point conditions.  相似文献   

5.
Fuel ethanol can be produced from softwood through hydrolysis in an enzymatic process. Prior to enzymatic hydrolysis of the softwood, pretreatment is necessary. In this study, two-step steam pretreatment employing dilute H2SO4 impregnation in the first step and SO2 impregnation in the second step, to improve the overall sugar and ethanol yield, was investigated. The first pretreatment step was performed under conditions of low severity (180°C, 10 min, 0.5% H2SO4) to optimize the amount of hydrolyzed hemicellulose. In the second step, the washed solid material from the first pretreatment step was impregnated with SO2 and pretreated under conditions of higher severity to make the cellulose more accessible to enzymatic attack, as well as to hydrolyze a portion of the cellulose. A wide range of conditions was used in the second step to determine the most favorable combination. The temperatures investigated were between 190 and 230°C, the residence times were 2, 5, and 10 min; and the SO2 concentration was 3%. The effect of pretreatment was assessed by both enzymatic hydrolysis of the solids and by simultaneous saccharification and fermentation (SSF) of the whole slurry, after the second pretreatment step. For each set of pretreatment conditions, the liquid fraction was also fermented to determine any inhibitory effects. Ethanol yield using the SSF configuration reached 66% of the theoretical value for pretreatment conditions in the second step of 210°C and 5 min. The sugar yield using the separate hydrolysis and fermentation configuration reached 71% for pretreatment conditions of 220°C and 5 min.  相似文献   

6.
The potential of heteropoly acid H3PW12O40 to catalyze the hydrolysis of cellulose to glucose under hydrothermal conditions was explored. This technology could contribute to sustainable societies in the future by using cellulose biomass. A study to optimize the reaction conditions, such as the amount of catalyst, reaction time, temperature, and the amount of cellulose used, was performed. A remarkably high yield of glucose (50.5%) and selectivity higher than 90% at 453 K for 2 h with a mass ratio of cellulose to H3PW12O40 of 0.42 were achieved. This was attributed to the high hydrothermal stability and the excellent catalytic properties, such as the strong Brønsted acid sites. This homogeneous catalyst can be recycled for reuse by extraction with diethyl ether. The results illustrate that H3PW12O40 is an environmentally benign acid catalyst for the hydrolysis of cellulose.  相似文献   

7.
Biological pretreatment of lignocellulosic biomass by fungi can represent a low-cost and eco-friendly alternative to physicochemical methods to facilitate enzymatic hydrolysis. However, fungal metabolism can cause cellulose loss and it is therefore necessary to use the appropriate fungal strain-biomass type combination. In this work, the effects of biological pretreatments carried out by five different fungi on enzymatic hydrolysis of wheat straw were investigated. The best results were obtained with a Ceriporiopsis subvermispora strain, which minimized weight and cellulose losses and gave the highest net sugar yield (calculated with respect to the holocellulose content of the untreated straw), up to 44 % after a 10-week pretreatment, more than doubling the yields obtained with the other isolates. Moreover, prolonging the pretreatment from 4 up to 10 weeks produced a 2-fold increase, up to 60 %, in digestibility (sugar yield, calculated considering the holocellulose content of the pretreated material). The hemicellulose content of the pretreated material resulted inversely correlated with digestibility, and it could thus be utilized as an index of the pretreatment efficacy. Finally, a correlation was also found between digestibility and the difference between the absorbance values at 290 and 320 nm of pretreated wheat straw extracts.  相似文献   

8.
Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15–20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.  相似文献   

9.
Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars prior to fermentation. Hydrolysis can be performed enzymatically or with mineral acids. In this study, dilute sulfuric acid was used as a catalyst for the pretreatment of rapeseed straw. The purpose of this study is to optimize the pretreatment process in a 15-mL bomb tube reactor and investigate the effects of the acid concentration, temperature, and reaction time. These parameters influence hemicellulose removal and production of sugars (xylose, glucose, and arabinose) in the hydrolyzate as well as the formation of by-products (furfural, 5-hydroxymethylfurfural, and acetic acid). Statistical analysis was based on a model composition corresponding to a 33 orthogonal factorial design and employed the response surface methodology to optimize the pretreatment conditions, aiming to attain maximum xylan, mannan, and galactan (XMG) extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: H2SO4 concentration of 1.76% and temperature of 152.6 °C with a reaction time of 21 min. Under these optimal conditions, 85.5% of the total sugar was recovered after acid hydrolysis (78.9% XMG and 6.6% glucan). The hydrolyzate contained 1.60 g/L glucose, 0.61 g/L arabinose, 10.49 g/L xylose, mannose, and galactose, 0.39 g/L cellobiose, 0.94 g/L fructose, 0.02 g/L 1,6-anhydro-glucose, 1.17 g/L formic acid, 2.94 g/L acetic acid, 0.04 g/L levulinic acid, 0.04 g/L 5-hydroxymethylfurfural, and 0.98 g/L furfural.  相似文献   

10.
Ethanol production from steam-explosion pretreated wheat straw   总被引:1,自引:0,他引:1  
Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid-or water-impregnated biomass was steam-exploded at different temperatures (160–200°C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190°C and 10 min or 200°C and 5 min, in acid-impregnated straw. However, 180°C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).  相似文献   

11.
Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.  相似文献   

12.
In this study, ultrasound-assisted alkaline pretreatment is developed to evaluate the morphological and structural changes that occur during pretreatment of cellulose, and its effect on glucose production via enzymatic hydrolysis. The pretreated samples were characterized using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction to understand the change in surface morphology, crystallinity and the fraction of cellulose Iβ and cellulose II. The combined pretreatment led to a great disruption of cellulose particles along with the formation of large pores and partial fibrillation. The effects of ultrasound irradiation time (2, 4 h), NaOH concentration (1–10 wt%), initial particle size (20–180 μm) and initial degree of polymerization (DP) of cellulose on structural changes and glucose yields were evaluated. The alkaline ultrasonic pretreatment resulted in a significant decrease in particle size of cellulose, besides significantly reducing the treatment time and NaOH concentration required to achieve a low crystallinity of cellulose. More than 2.5 times improvement in glucose yield was observed with 10 wt% NaOH and 4 h of sonication, compared to untreated samples. The glucose yields increased with increase in initial particle size of cellulose, while DP had no effect on glucose yields. The glucose yields exhibited an increasing tendency with increase in cellulose II fraction as a result of combined pretreatment.  相似文献   

13.
In this paper, a novel hybrid process for the treatment of microcrystalline cellulose (MCC) under hot-compressed water was investigated by applying constant direct current on the reaction medium. Constant current range from 1A to 2A was applied through a cylindrical anode made of titanium to the reactor wall. Reactions were conducted using a specially designed batch reactor (450 mL) made of SUS 316 stainless steel for 30–120 min of reaction time at temperature range of 170–230 °C. As a proton donor H2SO4 was used at concentrations of 1–50 mM. Main hydrolysis products of MCC degradation in HCW were detected as glucose, fructose, levulinic acid, 5-HMF, and furfural. For the quantification of these products, High Performance Liquid Chromatography (HPLC) and Gas Chromatography with Mass Spectroscopy (GC–MS) were used. A ½ fractional factorial design with 2-level of four factors; reaction time, temperature, H2SO4 concentration and applied current with 3 center points were built and responses were statistically analyzed. Response surface methodology was used for process optimization and it was found that introduction of 1A current at 200 °C to the reaction medium increased Total Organic Carbon (TOC) and cellulose conversions to 62 and 81 %, respectively. Moreover, application of current diminished the necessary reaction temperature and time to obtain high TOC and cellulose conversion values and hence decreased the energy required for cellulose hydrolysis to value added chemicals. Applied current had diverse effect on levulinic acid concentration (29.9 %) in the liquid product (230 °C, 120 min., 2 A, 50 mM H2SO4).  相似文献   

14.
Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H2SO4, HCl, HNO3, CH3COOH, HCOOH, H3PO4, and NaOH, KOH, Ca(OH)2, NH3·H2O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%.  相似文献   

15.
The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response surface methodology. The WEx process parameters studied were temperature (160–210 °C), retention time (5–20 min), and dilute sulfuric acid concentration (0.2–0.5 %). The pretreatment parameter set E, applying 210 °C for 5 min and 0.5 % dilute sulfuric acid, was found most suitable for achieving a high glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars.  相似文献   

16.
Cellulose nanocrystals were successfully isolated from cloth hairs using phosphoric acid. The yields, degree of polymerization, morphology, average particle size, crystallinity, chemical structure, and thermal stability of the prepared nanocrystals were investigated. The results demonstrated that yields and degree of polymerization decreased with the increase of concentration of phosphoric acid due to preferential degradation of amorphous cellulose, resulting in high thermal stability and crystallinity. Morphological analysis revealed that hydrolysis was more homogeneous with increasing acid concentration. In comparison with the cellulose nanocrystals prepared with 6.5, 8.0, and 9.5 M H3PO4, those prepared with 11.0 M H3PO4 had the most uniform particle sizes. Moreover, the nanocrystals had important influence on the crystallization of semicrystalline polymer.  相似文献   

17.
Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60g/L of corn stover, 195°C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50°C using 25 filter paper units (FPU)/g of dry matter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40°C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.  相似文献   

18.
Effects of major physicochemical and structural parameters of cellulose on the rate and degree of its enzymatic hydrolysis were tested with cellulosic materials from various sources. Some different pretreatments were: mechanical (milling), physical (X-ray irradiation), and chemical (cadoxen, H3PO4, H2SO4, NaOH, Fe2+/H2O2). The average size of cellulose particles and its degree of polymerization had little effect on the efficiency of enzymatic hydrolysis. For samples of pure cellulose (cotton linter, microcrystalline cellulose, α-cellulose), increase in the specific surface area accessible to protein molecules and decrease in the crystallinity index accelerated the enzymatic hydrolysis (the correlation coefficients were 0.89 and 0.92, respectively). In the case of lignocellulose (bagasse), a quantitative linear relationship only between specific surface area and reactivity was observed.  相似文献   

19.
Hot-compressed water (HCW) is among several cost-effective pretreatment processes of lignocellulosic biomass for enzymatic hydrolysis. The present work investigated the characteristics of HCW pretreatment of rice straw including sugar production and inhibitor formation in the liquid fraction and enzymatic hydrolysis of pretreated material. Pretreatment was carried out at a temperature ranging from 140 to 240 °C for 10 or 30 min. Soluble oligosaccharides were found to constitute almost all the components of total sugars in the liquid fraction. The maximal production of total glucose at 180 °C and below accounted for 4.4–4.9% of glucan in raw material. Total xylose production peaked at 180 °C, accounting for 43.3% of xylan in raw material for 10-min pretreatment and 29.8% for 30-min pretreatment. The production of acetic acid increased at higher temperatures and longer treatment time, indicating more significant disruption of lignocellulosic structure, and furfural production achieved the maximum (2.8 mg/ml) at 200 °C for both 10-min and 30-min processes. The glucose yield by enzymatic hydrolysis of pretreated rice straw was no less than 85% at 180 °C and above for 30-min pretreatment and at 200 °C and above for 10-min pretreatment. Considering sugar recovery, inhibitor formation, and process severity, it is recommended that a temperature of 180 °C for a time of 30 min can be the most efficient process for HCW pretreatment of rice straw.  相似文献   

20.
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号