首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This study aimed at developing low-cost, robust non-sterile fermentation processes for microbial lipid production from lignocellulose-derived sugars. Three representative oleaginous yeasts, Lipomyces tetrasporus (NRRL Y-11562), Rhodotorula toruloides (NRRL Y-1091), and Yarrowia lipolytica (NRRL YB-437), were tested for lipid production via non-sterile fermentation. Under optimal non-sterile conditions, all the tested strains had good performance on salt tolerance and lipid production. L. tetrasporus (NRRL Y-11562) gave the highest lipid titer of 12.79 g/L along with the depletion of both glucose and xylose, while Y. lipolytica (NRRL YB-437) showed the lowest lipid production and limited capability of xylose utilization. The key factors, including inoculation size, initial pH, and salt, all contributed to successful non-sterile fermentation. This study demonstrated that it is feasible to perform both sterile and non-sterile fermentation for lipid production using salt-containing lignocellulose-derived sugar streams.  相似文献   

2.
Under nutrient-limited conditions, the red yeast Rhodosporidium toruloides can accumulate neutral lipids, of which the compositional fatty acids are mainly saturated and mono-unsaturated ones with 16 or 18 carbon atoms. To improve the linoleic acid content in the lipids, we enabled galactose-inducible expression of the gene encoding Δ12-fatty acid desaturase (FADS) from Mortierella alpina or Fusarium verticillioides by integration of the corresponding expression cassettes into the genome of R. toruloides haploid and diploid strains. The relative linoleic acid content increased up to fivefold and the final linoleic acid titer reached 1.3 g/L under flask culture conditions. Our results suggested that R. toruloides may be further explored as cell factory for production of high-valued lipids and other fatty acid derivatives as bio-based chemicals and fuels.  相似文献   

3.

Background

The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. This regulation occurs during the direct synthesis of fatty acids and triacylglycerols (TAGs), as well as during other controlling processes in the main carbon metabolic pathway.

Results

In this study, the mRNA levels of Chlamydomonas citrate synthase (CrCIS) were found to decrease under nitrogen-limited conditions, which suggests suppressed gene expression. Gene silencing by RNA interference (RNAi) was conducted to determine whether CrCIS suppression affected the carbon flux in TAG biosynthesis. Results showed that the TAG level increased by 169.5%, whereas the CrCIS activities in the corresponding transgenic algae decreased by 16.7% to 37.7%. Moreover, the decrease in CrCIS expression led to the increased expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, overexpression of CrCIS gene decreased the TAG level by 45% but increased CrCIS activity by 209% to 266% in transgenic algae.

Conclusions

The regulation of CrCIS gene can indirectly control the lipid content of algal cells. Our findings propose that increasing oil by suppressing CrCIS expression in microalgae is feasible.
  相似文献   

4.
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.  相似文献   

5.
Cellulosic ethanol fermentation wastewater is the stillage stream of distillation column of cellulosic ethanol fermentation broth with high chemical oxygen demand (COD). The COD is required to reduce before the wastewater is released or recycled. Without any pretreatment nor external nutrients, the cellulosic ethanol fermentation wastewater bioconversion by Trichosporon cutaneum ACCC 20271 was carried out for the first time. The major components of the wastewater including glucose, xylose, acetic acid, ethanol, and partial of phenolic compounds could be utilized by T. cutaneum ACCC 20271. In a 3-L bioreactor, 2.16 g/L of microbial lipid accumulated with 55.05% of COD reduced after a 5-day culture of T. cutaneum ACCC 20271 in the wastewater. The fatty acid composition of the derived microbial lipid was similar with vegetable oil, in which it could be used as biodiesel production feedstock. This study will both solve the environmental problem and offer low-cost lipid feedstock for biodiesel production.  相似文献   

6.

Background

Vietnam is a country blessed with many medicinal plants widely used as food and for medicinal purposes, and they contain a host of active substances that contribute to health. However, the analysis of chemical constituents of these plant species has not been subject of literature discussion.

Results

In this study, the chemical compositions of essential oils of four Hedychium species, obtained by hydrodistillation, were determined by means of gas chromatography-flame ionization detector (GC-FID) and gas chromatography–mass spectrometry (GC-MS) techniques. Individually, α-pinene (52.5%) and β-pinene (31.8%) were present in the leaf oil of Hedychium stenopetalum Lodd., while linalool (45.2%), (E)-nerolidol (8.7%) and α-pinene (5.0%) were identified in the root. The leaf of Hedychium coronarium J. König was characterized by α-pinene (20.0%), linalool (15.8%), 1,8-cineole (10.7%), α-pinene (10.1%) and α-terpineol (8.6%); while α-pinene (23.6%), α-humulene (17.1%) and β-caryophyllene (13.0%) were identified in the root. Hedychium flavum Roxb., gave oil whose major compounds were α-pinene (22.5%), α-humulene (15.7%) and β-caryophyllene (10.4%) in the leaf; α-humulene (18.9%), β-caryophyllene (11.8%) and α-pinene (11.2%) in the stem, as well as α-pinene (21.8%), linalool (17.5%) and 1,8-cineole (13.5%) in the root. The main constituents of Hedychium ellipticum Buch.-Ham. ex Smith were (E)-nerolidol (15.9%), α-pinene (11.8%) and bornyl acetate (9.2%) in the leaf with 1,8-cineole (40.8%), α-pinene (18.3%) and α-pinene (11.0%) occurring in the root.

Conclusions

Ubiquitous monoterpenes and sesquiterpenes were identified as characteristic markers for Hedychium species. This work is of great importance for the evaluation of Hedychium essential oils grown in Vietnam.
  相似文献   

7.
Thermal profiles of buriti pulp oil (Mauritia flexuosa Mart.), tucumã pulp and kernel oils (Astrocarium vulgare Mart.), rubber seed oil (Hevea brasiliensis), passion fruit oil (Passiflora edulis) and ucuúba butter (Virola surinamensis) were analyzed by thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). Gas chromatography and calculated iodine values were performed to determine the fatty acid profile and to measure the degree of unsaturation in these oils, respectively. The TG curves showed three steps of mass loss, which can be attributed to the degradation of polyunsaturated, monounsaturated and saturated fatty acids. The DSC crystallization and melting curves are reported and depended on the fatty acid composition. Usually, oil samples with a high degree of saturation showed crystallization and melting profiles at higher temperatures than the oils with a high degree of unsaturation. The data obtained by physicochemical analysis of oil samples were analyzed by principal component analysis and hierarchical cluster analysis to increase understanding of the data set, examining the presence or absence of natural groupings between samples.  相似文献   

8.
9.
This study aimed to develop biocontrol Bacillus and explore bacterial biocontrol substances. According to the blood agar test, strain FJAT-14262 was screened as a biosurfactant-producer. The biosurfactant-producing ability of FJAT-14262 was further confirmed by the oil spreading tests because of its amphipathic character. Furthermore, its fermentation supernatant could decrease the surface tension from 74.1 to 32.7 mN m?1. Fourier transform infrared spectroscopy (FT-IR) analysis indicated that the biosurfactant produced by the strain FJAT-14262 was a kind of lipopeptides. Reverse-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis demonstrated that this lipopeptide contained surfactin with polar amino acids and hydrophobic fatty acid chains. Moreover, bioinformatic analysis revealed that the nonribosomal peptide synthetases genes srfAA, srfAB, and srfAC were structurally conserved in the FJAT-14262 genome. Importantly, the crude surfactant exhibited strong inhibitory activities against Fusarium oxysporum, suggesting that strain FJAT-14262 could be a potential biological control agent against Fusarium wilt.  相似文献   

10.
The antimicrobial properties of fifteen essential oils (EOs) tested on seventeen microorganisms were determined using the vapour-agar contact method. The most effective EOs (i.e. Lavandula angustifolia, Cymbopogon nardus, Citrus aurantifolia, Juniperus communis, Myrtus communis and Cinnamomum zeylanicum), whose volatile components afforded the best antimicrobial properties, were selected for a detailed study of chemical composition. All these six EOs contained one to three main components that presented 67–91 mass % of total mass of a corresponding essential oil. The amount of other components was much lower (less than 5 mass %). The volatile components of Lavandula angustifolia exhibited the most effective antimicrobial properties because they completely inhibited the tested bacteria and fungi within 3 days and 1 week, respectively. The components of Lavandula angustifolia with the highest concentration in the gaseous phase were linalool (99.0 ppmv), eucalyptol (44.9 ppmv), linalyl acetate (25.9 ppmv), myrcene (22.2 ppmv), β-trans-ocimene (19.7 ppmv), camphor (16.7 ppmv) and limonene (14.9 ppmv).  相似文献   

11.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

12.
Three p-phenylenediamine antioxidants (p-phenylenediamine-N,N,N′,N′-tetrapropionic acid tetramethyl ester, p-phenylenediamine-N,N,N′-tripropionic acid trimethyl ester, and p-phenylenediamine-N, N′-dipropionic acid dimethyl ester) were successfully synthesized via atom-economic aza-Michael addition of pphenylenediamine to methyl acrylate p-romoted by graphene oxide in water. The synthesized compounds were characterized by NMR, ESI-MS spectra, and elemental analyses. The effects of the solvent and graphene oxide on the reaction were investigated.  相似文献   

13.
An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.  相似文献   

14.
Efficient use of xylose along with glucose is necessary for the economic production of lignocellulosic based biofuels. Xylose transporters play an important role in the microorganisms for efficient utilization of xylose. In the present study, a novel method has been developed for a rapid assay of xylose transport activity in the xylose-utilizing isolates and other known yeasts. An assay was conducted to compare the activity of β-xylosidase using p-nitrophenyl-β-d-xylopyranoside (pNPX) in the intact, intracellular, and extracellular yeasts cells showing xylose transporter. Saccharomyces cerevisiae (MTCC 170) showed no xylosidase activity, while little growth was observed in the xylose-containing medium. Although other yeasts, i.e., Kluyveromyces marxianus NIRE-K1 (MTCC 5933), K. marxianus NIRE-K3 (MTCC 5934), and Candida tropicalis (MTCC 230), showed xylosidase activity in intact, intracellular, and extracellular culture. The xylosidase activity in intact cell was higher than that of extracellular and intracellular activity in all the yeast cells. The enzyme activity was higher in case of K. marxianus NIRE-K1 and K. marxianus NIRE-K3 rather than the C. tropicalis. Further, better xylosidase activity was observed in adapted K. marxianus cells which were 2.79–28.46 % higher than that of native (non-adapted) strains, which indicates the significant improvement in xylose transportation.  相似文献   

15.
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)—purified 25.41-fold, recovery of 47.1%—and lipase B (32,000 Da)—purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca2+, exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5–10.0 and 20–80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.  相似文献   

16.
The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.  相似文献   

17.
Poly(butylene succinate-co-butylene dimerized fatty acid) (P(BS-co-BDFA)) copolyesters were synthesized from succinic acid (SA) and dimerized fatty acid (DFA) with 1,4-butanediol (BDO) through a two-step process of esterification and polycondensation. The polyester compositions and physical properties of copolyesters were investigated by GPC, 1H NMR and 13C NMR, DSC, WAXD, DMA, TGA, tensile and rheology test. The melting temperature (Tm), and crystallization temperature (Tc) decreased gradually as the content of DFA monomer increased. P(BS-co-BDFA) copolyesters showed the same crystal structure as the PBS homopolyester. Besides, TGA results indicated that P(BS-co-BDFA)s were of higher thermal stabilities. Moreover, it was found that the synthesized P(BS-co-BDFA)s showed the maximum elongation at break (591%) as the DFA contents were 10 mol%. Rheology analysis indicated that the viscoelastic behavior of the polyesters greatly depended on the molecular weight of polyesters.  相似文献   

18.
Carboxylic acid N-[3-(dimethylamino)propyl]amides were prepared in 90–95% yield by the reaction of carboxylic acid esters with N,N-dimethyl-1,3-diaminopropane in the presence of zeolites as catalysts. Hydrochlorides of these amides show promise as cationic surfactants for hydrophobization of the bottomhole formation zone of oil fields.  相似文献   

19.
Chia (Salvia hispanica L.) seed oil is the richest natural source of α-linolenic acid, an n ? 3 polyunsaturated fatty acid (ω-3 PUFA), contributing to its use as functional and nutraceutical food in large part of Latin America. However, a food with such fatty acid composition could be highly susceptible to lipid oxidation. Thus, the present study was conducted to determine the thermal and oxidative stability of chia oil by various methods. Rancimat method was used to evaluate the effect of synthetic and natural antioxidants in the oxidative stability. Pressurized differential scanning calorimetry (PDSC), Schaal test and 1H NMR spectroscopy were used to assess the thermal stability. The effect of frying temperature and/or heating time on fatty acid composition was assessed by 1H NMR. The results show that tert-butylhydroquinone (TBHQ) and a mixture of TBHQ and rosemary extract were effective in increasing the oxidative stability of chia oil. Concerning the storage conditions, PDSC, Schaal test and 1H NMR data showed that chia oil is stable at 60 °C; hence, there is no need for special storage conditions. PDSC and 1H NMR results indicate that chia oil cannot be used in cooking and frying, because at high temperatures severe degradation of the unsaturated groups and loss of the nutritional properties of the oil occur.  相似文献   

20.
We selected Camellia tenuifolia (Hayata) seed oil to compare the effects of mushroom extract and vitamin E on its stabilization properties. Camellia tenuifolia was selected for its higher oil content, but its proportions of unsaturated fatty acids and natural antioxidants as well as its oxidation stability are lower than those of Camellia oleifera oil. Our aim was to improve the oxidation stability, thermal stability, and photodegradation of C. tenuifolia seed oil and then compare the advantages of mixing traditional antioxidant (vitamin E) and mushroom natural antioxidant components (mushroom extract) in the oil. The focus was on the analysis of the effects of Pleurotus citrinopileatus (Singer) extract and vitamin E on the stabilization properties of C. tenuifolia seed oil, which involved some degradation research, such as evaluating the thermal, oxidation, and antioxidant effects as well as the irradiative (pulsed light) stability of the original oil and oil mixed with additives for comparing the differences by differential scanning calorimetry tests and isothermal microcalorimeter (TAM Air) analyses. We determined the effects of stabilization additives vitamin E and various PC extract doses by using pulsed light irradiation (0, 30, and 60 pulses) and found that the 3 mass% PC extract had the best antiphotodegradation characteristics, and the 0.1 mass% vitamin E indicated the outstanding oxidation stability for among all of the additives in this study. Overall, we obtained the following suitable conditions to stabilize camellia oil: addition of vitamin E, addition of 3 mass% PC extract, and a nitrogen atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号