首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of embedded longitudinal vortices on heat transfer in film-cooled turbulent boundary layers at different blowing ratios are discussed. These results were obtained in boundary layers at free-stream velocities of 10 and 15 m/s. Film coolant was injected from a single row of holes at blowing ratios of 0.47–1.26. A single longitudinal vortex was induced upstream of the film-cooling holes using a half-delta wing attached to the wind tunnel floor. Heat transfer measurements were made downstream of injection using a constant heat flux surface with 126 thermocouples for surface temperature measurements. For all blowing ratios examined, the embedded vortices cause significant alterations to wall heat transfer and to film cooling distributions. Measurrments of mean temperatures and mean velocities in spanwise planes show that high wall heat transfer regions are associated with regions of high near-wall longitudinal velocity where very little film coolant is present. In addition to high heat transfer regions associated with the vortex downwash, there are also secondary heat transfer peaks. These secondary peaks develop due to shear layer mixing and interaction between the vortex and cooling jets and become higher in magnitude and more persistent with downstream distance as the blowing ratio increases from 0.47 to 1.26.  相似文献   

2.
Film cooling effectiveness from trenched shaped and compound holes   总被引:3,自引:0,他引:3  
This paper presents a comparative-numerical investigation on film cooling from a row of simple and compound-angle holes injected at 35° on a flat plate with four film cooling configurations: (1) cylindrical film hole; (2) 15° forward diffused film hole; (3) trenched cylindrical film hole; (4) trenched 15° forward-diffused film hole. All simulations are at fixed density ratio of 1.6, blowing ratio of 1.25, length-to-diameter L/D = 4 and pitch-to-diameter ratio of 3.0. The effect of length-to-diameter ratio on film cooling has been also investigated using L/D in the range of 1–8. Computational solutions of the steady, Reynolds-averaged Navier–Stokes equations have been obtained using a finite volume method. It has been found that the shape of the hole and the trenched holes can significantly affect the film cooling flow over the protected surface. Further, it has been shown that the film cooling effectiveness by trenched shaped holes is higher than all other configurations both in spanwise and streamwise specially downstream of the injection. Also, a trenched compound angle injection shaped hole produces much higher film cooling protection than the other configurations investigated in the present paper. The length-to-diameter ratio of trenched holes was found to have a significant effect on film cooling effectiveness and the spread of the coolant jets.  相似文献   

3.
The present study employs a transient liquid crystal thermography to measure film cooling performance over constant curvature of concave and convex surfaces. This work investigates detailed distributions of both film cooling effectiveness and heat transfer coefficient on concave and convex surfaces with one row of injection holes inclined stream-wise at 35° at four blowing ratios (0.5, 1.0, 1.5 and 2.0) on four test pieces with different hole configurations. All test models have a row of discrete holes with a stream-wise injection angle (γ of 35° and a pitch-to-diameter ratio (P/d) of 3. The current work examines four different injection configurations, one with simple and three with 8° forward-expanded holes. Three compound angles of 0, 45 and 90° with air (ρc/ρm = 0.98) as coolants are tested under the mainstream Reynolds number (Red) of 2300 on concave surface, and 1700 on convex surface. Measured results of the concave surface show that both the span-wise averaged heat transfer coefficient and film cooling effectiveness increase with blowing ratios for all tested models. Higher heat transfer levels induced by large flow disturbance of compound-angle injection also lead to poorer overall film cooling performance, especially at high blowing ratio and large span-wise injection angle. Present results show that the best surface protection on the concave surface over the widest range of M can be provided by the forward-expanded holes with β = 0° (Model-B), followed by the forward-expanded holes with β = 45° (Model-C). Convex surface results show that the compound-angle injection indicates increases in both film cooling effectiveness and heat transfer at moderate and high blowing ratios. The forward-expanded hole with simple-angle injection provides the best film performance because of high film cooling effectiveness and low heat transfer coefficient at blowing ratio of 0.5.  相似文献   

4.
This paper presents a comparative numerical investigation on film cooling from a row of holes injected at 35° on a flat plate with three film cooling configurations, including cylindrical hole, 15° forward diffused shaped hole, and new crescent hole. All simulations are conducted at blowing ratio of 0.6 and 1.25, length-to-diameter ratio of four and pitch-to-diameter ratio of three. Computational solutions of the steady, Reynolds averaged Navier–Stokes equations are obtained using a finite volume method. Previous successful application of a two-layer turbulence model to cylindrical hole is extended to predict film cooling for the different hole geometries. It has been found that the film cooling effectiveness of cylindrical holes obviously declined along with increasing the blowing ratio. While the forward diffused shaped hole presents a marked improvement, with a higher effectiveness at the lateral area between adjacent holes. By comparison, the crescent hole exhibits the highest film cooling effectiveness among the three configurations both in spanwise and streamwise especially downstream of the intersection of the two holes. Also, the crescent hole can restrain the vortex intensity, and then enhance the film cooling effectiveness.  相似文献   

5.
This paper describes the results of an experimental investigation into the film cooling effectiveness and the heat transfer characteristics of two staggered rows of compound angle holes. The effects of hole spacings and turbulence intensity on film cooling and heat transfer characteristic are investigated for three blowing rates; 0.5, 1.0 and 1.7. An attempt has been made to correlate the film cooling effectiveness results using a two dimensional correlation group. The increase of spanwise hole spacing results in a reduction in the film cooling effectiveness and an increase in the Stanton number. Increasing the freestream turbulence intensity has caused a significant reduction in the local film cooling effectiveness but increased the Stanton number, especially at blowing rate of 0.5.  相似文献   

6.
This paper addresses two important issues relevant to efficiency measurements in film-cooled annular cascades: the definition of the ideal flow to be used in loss calculation, and the measurements that are necessary for such loss calculation. The paper also addresses the question of the correct parameterisation of coolant density effects, showing that the momentum flux ratio, rather than the blowing rate, is the most appropriate parameter. Experiments examining the effect of extensive aerofoil surface film cooling on the aerodynamic efficiency of an annular cascade of transonic nozzle guide vanes are reported. A dense foreign gas (SF6/Ar mixture) is used to simulate engine representative coolant-to-mainstream density ratios, momentum ratios and blowing rates under ambient temperature conditions. Experiments are also conducted with air coolant to study the effect of density ratio on efficiency. The flowfield measurements have been obtained using a four-hole pyramid probe in a short duration blowdown facility which correctly models engine Reynolds and Mach numbers. This work compares the measured aerodynamic efficiencies of uncooled vanes with those which employ an extensive amount of cooling. The engine-representative cooling geometry investigated features 14 rows of cylindrical cooling holes, and a second geometry where 8 of these rows are replaced by holes having a fan-shaped exit. The effects of adding trailing edge slot ejection are also presented. By selectively blocking rows of holes, the cumulative effect on the mid-span efficiency of adding rows of cooling holes has also been determined. Experimental results are presented as area traverse maps (total pressure, isentropic Mach number and flow angles), from which the relative changes in efficiency due to film cooling have been calculated. These calculations reveal that the presence of foreign-gas coolant from the cylindrical-hole geometry increases the aerodynamic loss (relative to the uncooled baseline) by 6.7%; and coolant from the fan-shaped holes increases the loss by 15%. The effects of different assumptions for the coolant total pressure are shown to significantly change the measured loss; if the loss measurements are based on the mainstream total pressure, rather than the total pressure in the coolant cavity, the respective increase in loss (relative to the uncooled baseline) of cylindrical and fan-shaped holes is 4.5% and 12.5%. Experimental data is compared with loss predictions using a Hartsel model. Received: 4 December 1998/Accepted: 1 September 1999  相似文献   

7.
An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°–10° and 45°–10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°–10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.  相似文献   

8.
This paper reports a computational investigation on the effects of mainstream turbulence intensity on film cooling effectiveness from trenched holes over a symmetrical blade. Computational solutions of the steady, Reynolds-Averaged Navier–Stokes equations are obtained using a finite volume method with k − ε Turbulence model. Whenever possible, computational results are compared with experimental ones from data found in the open literature. Computational results are presented for a row of 25° forward-diffused film hole within transverse slot injected at 35° to AGTB symmetrical blade. Four blowing ratios, M = 0.3, 0.5, 0.9 and 1.3 are studied together with four mainstream turbulence intensities of Tu = 0.5, 2, 4 and 10%. Results indicate that the trenched shaped holes tend to give better film cooling effectiveness than that obtained from discrete shaped holes for all blowing ratios and all turbulence intensities. The trenching of shaped holes has changed the optimum blowing ratio and also the location of re-attachment of separated jet at high blowing ratios. Moreover, it has been found that the effect of mainstream turbulence intensity for trenched shaped holes is similar to that obtained for discrete shaped holes with the exception that the sensitivity of film cooling effectiveness to turbulence intensity has decreased for trenched shaped holes.  相似文献   

9.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

10.
Flow features and film cooling performance of five configurations of double-row, cylindrical holes, upstream of an E3 vane, in a linear cascade are numerically investigated. This simulation is completed using a verified turbulence model at four blowing ratios (M = 0.5, 1.0, 1.5, 2.0). The first three configurations have two rows of cylindrical holes, each row with the same compound angle (β=-45°, 0° or 45°), while the other two have two rows with opposite compound angles (β=-45°, 45° and β=45°, -45°), which are also referred to as double-jet film cooling (DJFC) holes. The primary effects on the downstream endwall and the secondary effects on the nearby airfoil of the cooled passage are analyzed and discussed in detail. Results show that at low blowing ratios the movement of the coolant is denominated by the interaction between the jets and vortices resulting in similar film coverage on both the endwall and airfoil. The effect of vortices is reduced at high blowing ratios. It is also shown that the movement of the coolant is determined by the initial velocity direction, as well as the film cooling configuration.  相似文献   

11.
This paper studies film effectiveness and heat transfer coefficients on a large scale symmetric circular leading edge with three rows of film holes. The film hole configuration focuses on a smaller injection angle of 20° and a larger hole pitch with respect to the hole diameter (P/d=7.86). The study includes four blowing ratios (M=1.0,1.5,2.0 and 2.5), two Reynolds numbers (Re=30,000 and 60,000), and two free stream turbulence levels (nominally Tu=1% and 20% depending on the Reynolds number). A transient liquid crystal (LC) image technique is employed to obtain the film effectiveness and heat transfer coefficient distributions with high spatial resolutions of 0.6 mm in both streamwise and spanwise directions. Results are presented for detailed and spanwise averaged values of film effectiveness and Frössling number. Turbulence intensity has an attenuation on film effectiveness as well as on Frössling number for all blowing ratios at Re=30,000. Under high turbulence conditions the film effectiveness and Frössling number increase as blowing ratio increases from 1.0 to 2.0 for both Reynolds numbers. Further increasing the blowing ratio results in reverse effect. Increasing the Reynolds number from 30,000 to 60,000 results in increases in both the film effectiveness and Frössling number at high turbulence except for M=2.5. The blowing ratio of two shows a spatial coupling of the stagnation row of film holes with the second row (21.5°) of film holes which results in the highest film effectiveness and also the highest Frössling numbers.  相似文献   

12.
A numerical study was performed to evaluate the effectiveness of the novel sister hole film cooling technique. Two secondary coolant holes bound the primary coolant hole slightly downstream of its midpoint, intended to minimize the primary vortex pair and improve cooling performance. An unstructured hexahedral mesh was generated and the realizable kε turbulence model with near-wall modeling was used in these simulations. Blowing ratios of 0.2, 0.5, 1.0, and 1.5 were simulated to evaluate the applicability of sister holes in practical applications. It was found that sister holes significantly improved cooling performance over the entire computational domain, particularly at high blowing ratios. These results arose by countering the primary vortex pair with a secondary pair from these sister holes, ultimately maintaining flow adhesion where the coolant stream would have otherwise separated.  相似文献   

13.
The effect of film cooling on the aerodynamic performance of turbine blades is becoming increasingly important as the gas turbine operating temperature is being increased in order to increase the performance. The current paper investigates the effect of blowing ratio on the aerodynamic losses of a symmetric airfoil by pressure measurements and Particle Image Velocimetry (PIV). The test model features 4 rows of holes located on the suction side at 5%, 10%, 15% and 50% of the chord length. The Reynolds number based on the airfoil chord is 1.2 × 105. Experiments are performed by varying the location of air injection, the angle of attack, and the mainstream velocity. The coolant air is injected at ambient temperature and the blowing ratio is varied from 0 to 1.91. It is observed that the losses due to film cooling increase with blowing ratio of 0 to 0.48, and the wake is shifted towards the suction side. Conversely, the aerodynamic losses decrease when the blowing ratio is increased further from 0.64 to 1.91. This trend has been observed for all the experimental configurations. The effect of blowing ratio on flow separation is investigated with the time-averaged velocity fields obtained from PIV measurements. It is observed that low blowing ratios, the separation point shifts upstream and at high blowing ratios the ejected coolant energizes the flow and delays separation. The pressure field around the airfoil is reconstructed from the integration of the Poisson equation based on the PIV velocity fields. The experimental results can be used for validation of numerical models for predicting losses due to film cooling.  相似文献   

14.
This paper describes the results of an experimental investigation into the film cooling effectiveness and heat transfer characteristics of two staggered injection rows of either a combination of one row of simple angle holes with another row of compound angle holes or with both rows of compound angle holes. The effect of using various injections holes arrangements as well as the relative location of the compound angle holes row to the simple angle holes row have been investigated for different blowing rates. Using combination of one row of downstream compound angle holes with another upstream simple injection holes row provides a significant increase in the film cooling protection over a flat plate surface, over that obtained from either two rows of only simple injections holes or compound angle holes. Received on 17 July 1998  相似文献   

15.
Numerical modelling of film cooling from converging slot-hole   总被引:1,自引:0,他引:1  
This paper presents a numerical prediction of a new 3D film cooling hole geometry, the converging slot-hole or console. The console geometry is designed in order to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems without loosing the mechanical strength of a row of discrete holes. The cross section of the console changes from a circular shape at the inlet to a slot at the exit. Previous successful application of a new anisotropic DNS based two-layer turbulence model to cylindrical and shaped hole injections is extended to predict film cooling for the new console geometry. The suitability of the proposed turbulence model for film cooling flow is validated by comparing the computed and the measured wall-temperature distributions of cylindrical hole injections. The result shows that the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. Comparative computations of the adiabatic film cooling effectiveness associated with the three geometries tested in the present study (cylindrical, shaped, and console) show that the new console film-cooling hole geometry is definitely superior to the other geometries as shown by the uniform lateral spreading of the effectiveness with a slight enhancement downstream of the intersection of the two consoles.  相似文献   

16.
Three-dimensional mean velocity and concentration fields have been measured for a water flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. Three-component mean velocities were measured with conventional magnetic resonance velocimetry, while time-averaged concentration distributions were measured with a magnetic resonance concentration technique for flow at two Reynolds numbers (Re) differing by a factor of 2, three blowing ratios, and with and without an internal pin fin array in the coolant feed channel. The results show that the flows are essentially independent of Re for the regime tested in terms of the film cooling surface effectiveness, normalized velocity profiles, and normalized mean streamwise vorticity. Blowing ratio changes had a larger effect, with higher blowing ratios resulting in surface effectiveness improvements at downstream locations. The addition of a pin fin array within the slot feed channel made the spanwise distribution of coolant at the surface more uniform. Results are compared with transonic experiments in air at realistic density ratios described by Holloway et al. (2002a).  相似文献   

17.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper represents the detailed results of an evolutionary optimization framework towards the exploration of vortex mechanisms leading to effective anti-vortex film cooling. In this regards, several arrangements of triple cooling holes were studied on flat and curved geometries using differential-evolution optimization algorithm and a modified Reynolds-stress based flow solver. Depending on the flow and geometric parameters, four distinct types of vortex interaction with different cooling mechanisms were identified. The vortex-trapping mechanism, observed in the optimized upstream arrangement acts through imposing a mild downwash over the main counter-rotating vortex pair and provides the best cooling effectiveness for the low injection angle (less than 30°) cases. The vortex-suppression and -balancing are the optimal possible solutions of the adjacent arrangement. The latter is the classic well-known type of anti-vortex cooling, while the former provides a sudden strong controlling potential for high blowing ratios (higher than 1.0) and high injection angle film cooling. For the non-flat surfaces the triple holes effectively perform up to blowing-ratio of 2.0. However, the reverse-vortex-trapping mechanism occurring in the downstream arrangement is recommended for convex surfaces, while the adjacent arrangement is the choice for concave regions. In general, there is a possibility of reducing the coolant consumption about 30% through increasing the pitch-to-diameter ratio, while the values of cooling-effectiveness still remain in an acceptable range.  相似文献   

19.
The influence of various incidence angles on film cooling effectiveness of an axial turbine blade cascade with leading edge ejection from two rows of cooling holes is numerically investigated. The rows are located in the vicinity of the stagnation line. One row is located on the suction side and the other one is on the pressure side. The predicted pressure field for various blowing ratios (M = 0.7, 1.1 and 1.5) is compared with available experimental results at the design condition. Moreover, the effect of various incidence angles (?10°, ?5°, 0°, 5° and 10°) at three blowing rates is investigated by analyzing the results of both laterally averaged and area averaged values of adiabatic film cooling effectiveness. Numerical results indicate that the incidence angle can strongly affect the thermal protection of the blade at low blowing ratio but becomes less dominant at high blowing ratio. In fact, for the low blowing ratio, a small change in the incidence angle that relates to the design condition can deeply affect the thermal protection of the blade, which is evident from the laterally and area averaged film cooling effectiveness distributions.  相似文献   

20.
The primary goal of this paper is to study film cooling performance for a cylindrical hole with plasma aerodynamic actuation. The simulation model of plasma aerodynamic actuation on improving film hole cooling effectiveness was established. The heat effect of plasma aerodynamic actuation model was taken into consideration. It was firstly found that the velocity and blowing ratio greatly affect the film cooling effectiveness. Then, position, power input, and the number of plasma actuators were particularly investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号