首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Results of an investigation into the properties of polyethylene (PE) with small, no more than 5 wt.%, additions of multiwall carbon nanotubes (CNTs) are reported. Specimens of the composite were prepared using a concentrate containing 31.6 wt.% of nanotubes in the polyethylene matrix. The concentrate was fabricated by a patent in situ polymerization method. Experimental data on the influence of CNT additions on the thermograms of differential scanning calorimetry, the crystallinity of the polyethylene matrix, and the indices of mechanical properties (yield stress, strength, elastic modulus, ultimate elongation, and long-term creep) of PE/CNT composite are obtained. A theoretical analysis of elastic properties of the PE/CNT composite was carried out by using the Mori–Tanaka theory of an equivalent medium. The calculation results are compared with experimental data.  相似文献   

2.
L. Kehrer  V. Müller  B. Brylka  T. Böhlke 《PAMM》2015,15(1):453-454
In order to predict the effective material properties of a short-fiber reinforced polymer (SFRP), homogenization of elastic properties with the self-consistent (SC) scheme and the interaction direct derivative (IDD) method is performed by means of µCT data describing the microstructure of the composite material. Using dynamic mechanical analysis (DMA), the material properties of both, polypropylene and fiber reinforced polypropylene are investigated by tensile tests under thermal load. The measured storage modulus of the matrix material is used as input parameter for the homogenization scheme. The effective properties of SFRP are compared to experimental results from DMA. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Polyimide (PI) films based on poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PI-PM) were filled with different nanoparticles, such as organically modified montmorillonite (MMT), vapor-grown carbon nanofibers (VGCF), and silicate nanotubes (SNT) of different concentration.. Rheological measurements and structural investigations showed a relatively good dispersion of the nanoparticles in the PI matrix to an extent that depended on the type and morphology of the nanoparticles used. The mechanical (tensile modulus, strength, and deformation at break) and the barrier (oxygen permeability) properties of PI-PM nanocomposite films were investigated. The polyimide nanocomposites filled with SNT and tubular VGCF nanoparticles showed an increased tensile modulus with increasing volume concentration of the nanoparticles without a catastrophic decrease in the elongation at break. In addition, the MMT particles, chemically modified with 4,4'-bis-(4′′-aminophenoxy)diphenylsulfone, significantly improved the barrier properties of the PI-PM films, which exceeded those of the nanocomposites filled with VGCF or SNT. The relative poor oxygen barrier and mechanical properties of the PI-PM/VGCF nanocomposite films are ascribed to the relative weak adhesion between the VGCF and the polyimide matrix, which was confirmed by scanning electron microscopy of the fracture surface of these films.  相似文献   

4.
Short pulsed laser milling is a novel method to process the carbon fiber reinforced plastics (CFRP) which has bad machinability. This paper presents a numerical model studying the material removal mechanism of CFRP laser milling. It is confirmed by both the experiment and the simulation that laser ablation and mechanical erosion caused by the polymer pyrolysis are all involved in the material removal. Because the heating and cooling rate in short pulsed laser milling is high, ablation of two adjacent laser pulses almost has little influence on each other. By conducting the parametric analysis, it was found that the spacing distance under which the matrix between two adjacent laser pulses was completely degraded should be adopted to utilize the mechanical erosion effectively. Laser milling experiments of CFRP laminates were performed using a nanosecond pulsed laser system. The established model could predict the average ablation depth per scanning pass at an optimal spacing distance.  相似文献   

5.
Carbon nanotubes were prepared by chemical vapor deposition (CVD) of hydrocarbon gas on various substrates. The effect of substrates on the growth, morphology and structure of carbon nanotubes were investigated. Aligned carbon nanotubes with high density and purity were achieved by CVD on mesoporous silica substrate. The Raman scattering of aligned carbon nanotubes was carried out, and the dependence of the phonon properties on the microstructure of the nanotubes has been discussed.  相似文献   

6.
Molecular mechanics and solid mechanics are linked to establish, a nanoscale analytical continuum theory for determination of stiffness and Young's modulus of carbon nanotubes. A space-frame structure consisted of representative unit cells has been introduced to describe the mechanical response of carbon nanotubes to the applied loading. According to this assumption a novel unit cell, given the name mechanical unit cell here is introduced to construct a graphene sheet or the wall of the carbon nanotubes. Incorporating the Morse potential function with the strain energy of the mechanical unit cells in a carbon nanotube is the key point of this study. The structural model of the carbon nanotube is solved to obtain its Young's modulus by using the principle of minimum total potential energy. It was found that the Young's modulus of the zigzag and armchair single-walled carbon nanotubes are 1.42 and 1.30 TPa, respectively. The results indicate sensitivity of the stiffness and Young's modulus of carbon nanotubes to chirality but show no dependence on its diameter. The presented analytical investigation provides a very simple approach to predict the Young's modulus of carbon nanotubes and the obtained results are in good agreement with the existing experimental and theoretical data.  相似文献   

7.
The mechanical properties and effects in fibrous composite materials are compared. The materials are based on the same matrix (EPON-828 epoxy resin) and differ in the type of fibers: Thornel-300 carbon microfibers, graphite microwhiskers, carbon zigzag nanotubes, and carbon chiral nanotubes. Two material models are considered: a model of elastic medium (macrolevel model) and a model of elastic mixture (micro-nanolevel model). Mechanical constants of 40 materials (4 types + 10 modifications) are calculated and compared. The theoretical ultimate compression strength along the fibers is discussed. The effects accompanying the propagation of longitudinal waves in the fiber direction are investigated.  相似文献   

8.
The main objective of this paper is to develop a high-wear-resistant short-carbon-fiber-reinforced polyetheretherketone (PEEK) composite by introducing additional multiwall carbon nanotubes (MWCNTs) into it. The compounds were mixed in a Haake batch mixer and fabricated into sheets by compression molding. Samples with different aspect ratios and concentrations of fillers were tested for wear resistance. The worn surfaces of the samples were examined by using a scanning electron microscope (SEM), and the photomicrographs revealed a higher wear resistance of the samples containing the additional carbon nanotubes. Also, a better interfacial adhesion between the short carbon fibers and vinyl ester in the composite was observed.  相似文献   

9.
This work deals with a study of the vibrational properties of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs) under the actions of moving load. Timoshenko and Euler-Bernoulli beam theories are used to evaluate dynamic characteristics of the beam. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. An embedded carbon nanotube in a polymer matrix and its surrounding inter-phase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The primary contribution of the present work deals with the global elastic properties of nano-structured composite beams. The system of equations of motion is derived by using Hamilton’s principle under the assumptions of the Timoshenko beam theory. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. In order to evaluate time response of the system, Newmark method is also used. Numerical results are presented in both tabular and graphical forms to figure out the effects of various material distributions, carbon nanotube orientations, velocity of the moving load, shear deformation, slenderness ratios and boundary conditions on the dynamic characteristics of the beam. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam and it is believed that new results are presented for dynamics of FG nano-structure beams under moving loads which are of interest to the scientific and engineering community in the area of FGM nano-structures.  相似文献   

10.
The material under consideration is a thermoplastic copolymer blend of polypropylene and polyethylene (PP/PE), constituting the core layer of a steel/polymer/steel composite material. A biaxial loading machine was developed for studying the behavior of the copolymer subjected to in-plane complex stress states. A study on the shape of the specimen by means of numerical finite element simulations and preliminary experimental tests are carried out, in order to obtain a maximization of the strain distribution in the middle region of the cruciform specimen. Afterwards, the sensitivity of the mechanical response under both equibiaxial and non-equibiaxial conditions is addressed. All the experiments are monitored by means of a digital image correlation (DIC) system, providing full-field measurements of the displacements, and, consequently, of the strain distribution. The presented experimental results will be used for validating the material model developed for the PP/PE layer material. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The physicomechanical properties of polyvinylacetate (PVA) with small, no more than 2 wt.%, additions of carbon nanotubes (CNTs) are investigated. Data on the influence of CNT concentration on the differential scanning calorimetry thermograms, thermal destruction, electrical resistance, water vapor sorption, as well as indices of the mechanical properties of PVA/CNT (yield stress, strength, elastic modulus, ultimate elongation, and short-term creep) are reported. A variant of calculation of the elastic constants of the nanocomposite is considered with account of the effect of nanotube agglomeration.  相似文献   

12.
This paper deals with free vibration analysis of functionally graded composite shell structures reinforced by carbon nanotubes. Uniform and three distributions of carbon nanotubes which are graded in the thickness direction of the structure are considered. The effective material properties are determined via a micro-mechanical model using some efficiency parameters. The equations of motion are developed based on a discrete double directors shell finite element formulation which introduces the transverse shear deformations via a higher-order distribution of the displacement field. Comparison studies are carried out for various functionally graded composite shell structures reinforced by carbon nanotubes in order to highlight the applicability and the efficiency of the proposed model in the prediction of the vibrational behavior of such shell structures.  相似文献   

13.
In this experimental work, the influence of carbon fibers (CFs) added to polyimide (PI) composite plastics was investigated. Also, the effect of carbon nanotubes (CNTs) on the fiber-matrix interface was studied. The results obtained show that the mechanical properties of CF/CNT/PI nanocomposites are superior to those of CF/PI composites.  相似文献   

14.
Single-wall carbon nanotubes (SWCNTs) were synthesized and purified. A water colloid of SWCNTs was prepared and used to assemble SWCNTs onto a gold film surface. Scanning tunneling microscopy (STM) images showed that short SWCNTs stood on gold film surfaces. Using STM tips made of SWCNTs, a crystal grain image of a gold thin film and an atomic resolution image of highly oriented pyrolytic graphite were successfully obtained. The electrical properties of short SWCNTs, which stood on the surface of gold film, were measured using STM. That SWCNTs stand on gold thin films is a promising technique for studying structures and properties of carbon nanotubes, as well as assembling and fabricating high-intensity coherent electron sources, field emission flat panel display, tips for scanning probe microscopes, new nanoelectronic devices, etc.  相似文献   

15.
An epoxy resin (Epon 828) was filled with single- and multiwalled carbon nanotubes (SWCNT and MWCNT) in two steps by using the high shear mixing and ultrasonication techniques. The melt flow of the composites was characterized in a plate/plate rheometer. The thermomechanical properties of the composites were determined in dynamic mechanical analysis tests performed at various frequencies and temperatures. It was found that the incorporation of SWCNT or MWCNT increased the viscosity and stiffness of epoxy above its glass-transition temperature. The time-temperature superposition principle was employed to estimate the storage modulus of the composites as a function of frequency (f = 10–33–103 Hz) in the form of master curves.  相似文献   

16.
17.
《Applied Mathematical Modelling》2014,38(11-12):2934-2945
Based on an effective model of multi-walled carbon nanotubes and Donnell-shell theory, an analytical method is presented to study dynamic stability characteristics of multi-walled carbon nanotubes reinforced composites considering the surface effect of carbon nanotubes. From obtained results it is seen that carbon nanotubes composites, under combined static and periodic axial loads, may occur in a parametric resonance, the parametric resonance frequency of dynamic instability regions of CNTs reinforced composites under axially oscillation loading enhances as the stiffness of matrix surrounding CNTs increases, and the surface effective modulus and residue stress of carbon nanotubes make the parametric resonance frequency and the region breadth of dynamic instability of carbon nanotubes reinforced composites increase.  相似文献   

18.
A literature review on the prediction of Young’s modulus for carbon nanotubes, from both theoretical and experimental aspects, is presented. The discrepancies between the values of Young’s modulus reported in the literature are analyzed, and different trends of the results are discussed. The available analytical and numerical simulations for predicting the mechanical properties of carbon nanotube composites are also reviewed. A gap analysis is performed to highlight the obstacles and drawbacks of the modeling techniques and fundamental assumptions employed which should be overcome in further studies. The aspects which should be studied more accurately in modeling carbon nanotube composites are identified.  相似文献   

19.
Silicon-based microelectromechanical system (MEMS) and nanoelectromechanical systems (NEMS) have been used to design and fabricate sensitive sensors and actuators. Recent research trends show that graphene and carbon nanotubes (CNTs) have been used to change the surface properties of silicon-based MEMS and NEMS to improve different mechanical, optical and electrical properties of silicon-based composites. In this paper, we focus on analyzing the vibrational characteristics of silicon-based devices when the surface of silicon is coated with single-layer graphene and horizontally aligned carbon nanotubes (HACNTs). To perform the analysis, we use multi-scale finite element approach for developing graphene–silicon nanocomposites (GSNCs) and carbon nanotube-silicon nanocomposites (CSNC) composites in which interface layer of silicon with graphene or CNT is modeled using bonded contact element. Subsequently, we performed modal analysis to find the first transverse mode frequency of GSNC and CSNC composites for beam with smaller as well as longer lengths. The numerical model is compared with classical beam theory with and without surface effect. For GSNCs composites, we take a fixed-free case with lengths in the range of (20 Å–120 Å) and (400 Å–2000 Å), respectively. For CSNC composites, CNT diameter is varied from (5 Å–30 Å) for single walled nanotube. Subsequently, we analyze the influence of HACNTs-on-silicon on its vibrational characteristics. The analysis presented in the paper demonstrate that GSNCs offer a higher bending stiffness compared to single layer graphene (SLGs) and isolated silicon nanosheet which lead to higher natural frequency. A similar trend is found in the case of HACNTs on silicon NS when the number of tubes increases.  相似文献   

20.
A masterbatch process based on a minicalander (three-roller mill) and a vacuum dissolver was developed in order to produce multiwall carbon nanotube/epoxy composites with loading fractions of 0.5, 1.0, and 2.0 wt.%. TEM and SEM analyses were performed to investigate the dispersion results. A contrast imaging in the SEM backscattering mode revealed a homogeneous distribution of carbon nanotubes in the whole volume of the material. Furthermore, an interesting correlation was found to exist between the network structure formed by the nanotubes in the epoxy matrix and the appearance of fracture surface of the nanocomposites. Furthermore, the nanocomposites exhibited an electrical conductivity in the regime of some 10−2 S/m. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 5, pp. 567–582, September–October, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号