首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a modified tangential frequency filtering decomposition (MTFFD) preconditioner is proposed. The optimal order of the modification and the optimal relaxation parameter is determined by Fourier analysis. With the choice of optimal order of modification, the Fourier results show that the condition number of the preconditioned matrix is O(h-\frac23){{\mathcal O}(h^{-\frac{2}{3}})}, and the spectrum distribution of the preconditioned matrix can be predicted by the Fourier results. The performance of MTFFD preconditioner is compared with tangential frequency filtering (TFFD) preconditioner on a variety of large sparse matrices arising from the discretization of PDEs with discontinuous coefficients. The numerical results show that the MTFFD preconditioner is much more efficient than the TFFD preconditioner.  相似文献   

2.
We study the long-time asymptotics of the doubly nonlinear diffusion equation ${\rho_t={\rm div}(|\nabla\rho^m |^{p-2} \nabla\left(\rho^m\right))}We study the long-time asymptotics of the doubly nonlinear diffusion equation rt=div(|?rm |p-2 ?(rm)){\rho_t={\rm div}(|\nabla\rho^m |^{p-2} \nabla\left(\rho^m\right))} in \mathbbRn{\mathbb{R}^n}, in the range \fracn-pn(p-1) < m < \fracn-p+1n(p-1){\frac{n-p}{n(p-1)} < m < \frac{n-p+1}{n(p-1)}} and 1 < p < ∞ where the mass of the solution is conserved, but the associated energy functional is not displacement convex. Using a linearisation of the equation, we prove an L 1-algebraic decay of the non-negative solution to a Barenblatt-type solution, and we estimate its rate of convergence. We then derive the nonlinear stability of the solution by means of some comparison method between the nonlinear equation and its linearisation. Our results cover the exponent interval \frac2nn+1 < p < \frac2n+1n+1{\frac{2n}{n+1} < p < \frac{2n+1}{n+1}} where a rate of convergence towards self-similarity was still unknown for the p-Laplacian equation.  相似文献   

3.
The Vlasov equation is a kinetic model describing the evolution of a plasma which is a globally neutral gas of charged particles. It is self-consistently coupled with Poisson’s equation, which rules the evolution of the electric field. In this paper, we introduce a new class of forward semi-Lagrangian schemes for the Vlasov–Poisson system based on a Cauchy Kovalevsky (CK) procedure for the numerical solution of the characteristic curves. Exact conservation properties of the first moments of the distribution function for the schemes are derived and a convergence study is performed that applies as well for the CK scheme as for a more classical Verlet scheme. A L 1 convergence of the schemes will be proved. Error estimates [in O(Dt2+h2 + \frach2Dt){O\left(\Delta{t}^2+h^2 + \frac{h^2}{\Delta{t}}\right)} for Verlet] are obtained, where Δt and h = max(Δx, Δv) are the discretization parameters.  相似文献   

4.
In this paper we establish some regularizing and decay rate estimates for mild solutions of the Debye–Hückel system. We prove that if the initial data belong to the critical Lebesgue space L\fracn2(\mathbbRn){L^{\frac{n}{2}}(\mathbb{R}^{n})} , then the L q -norm ( \fracn2 £ q £ ¥{\frac{n}{2} \leq q \leq \infty}) of the βth order spatial derivative of mild solutions are majorized by K1(K2|b|)|b|t-\frac|b|2-1+\fracn2q{K_{1}(K_{2}|\beta|)^{|\beta|}t^{-\frac{|\beta|}{2}-1+\frac{n}{2q}}} for some constants K 1 and K 2. These estimates particularly imply that mild solutions are analytic in the space variable, and provide decay estimates in the time variable for higher-order derivatives of mild solutions. We also prove that similar estimates also hold for mild solutions whose initial data belong to the critical homogeneous Besov space [(B)\dot]-2+\fracnpp,¥(\mathbbRn){\dot{B}^{-2+\frac{n}{p}}_{p,\infty}(\mathbb{R}^n)} ( \fracn2 < p < n{\frac{n}{2} < p < n}).  相似文献   

5.
This paper deals with simultaneous and non-simultaneous blow-up for heat equations coupled via nonlinear boundary fluxes
\frac?u?h = um + vp, \frac?v?h = uq + vn\frac{\partial u}{\partial\eta} = u^{m} + v^{p}, \frac{\partial v}{\partial\eta} = u^{q} + v^{n}  相似文献   

6.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

7.
Let (tj)j ? \mathbbN{\left(\tau_j\right)_{j\in\mathbb{N}}} be a sequence of strictly positive real numbers, and let A be the generator of a bounded analytic semigroup in a Banach space X. Put An=?j=1n(I+\frac12 tjA) (I-\frac12 tjA)-1{A_n=\prod_{j=1}^n\left(I+\frac{1}{2} \tau_jA\right) \left(I-\frac{1}{2} \tau_jA\right)^{-1}}, and let x ? X{x\in X}. Define the sequence (xn)n ? \mathbbN ì X{\left(x_n\right)_{n\in\mathbb{N}}\subset X} by the Crank–Nicolson scheme: x n  = A n x. In this paper, it is proved that the Crank–Nicolson scheme is stable in the sense that supn ? \mathbbN||Anx|| < ¥{\sup_{n\in\mathbb{N}}\left\Vert A_nx\right\Vert<\infty}. Some convergence results are also given.  相似文献   

8.
We prove that max |p′(x)|, where p runs over the set of all algebraic polynomials of degree not higher than n ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than ( n - 1 ) \mathord
/ \vphantom ( n - 1 ) ?{1 - x2} ?{1 - x2} {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} for all x ∈ (−1, 1) such that | x | ? èk = 0[ n \mathord/ \vphantom n 2 2 ] [ cos\frac2k + 12( n - 1 )p, cos\frac2k + 12np ] \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} .  相似文献   

9.
For a continuous function s\sigma defined on [0,1]×\mathbbT[0,1]\times\mathbb{T}, let \ops\op\sigma stand for the (n+1)×(n+1)(n+1)\times(n+1) matrix whose (j,k)(j,k)-entries are equal to \frac1 2pò02p s( \fracjn,eiq) e-i(j-k)q  dq,        j,k = 0,1,...,n . \displaystyle \frac{1} {2\pi}\int_0^{2\pi} \sigma \left( \frac{j}{n},e^{i\theta}\right) e^{-i(j-k)\theta} \,d\theta, \qquad j,k =0,1,\dots,n~. These matrices can be thought of as variable-coefficient Toeplitz matrices or as the discrete analogue of pseudodifferential operators. Under the assumption that the function s\sigma possesses a logarithm which is sufficiently smooth on [0,1]×\mathbbT[0,1]\times\mathbb{T}, we prove that the asymptotics of the determinants of \ops\op\sigma are given by det[\ops] ~ G[s](n+1)E[s]     \text as   n?¥ , \det \left[\op\sigma\right] \sim G[\sigma]^{(n+1)}E[\sigma] \quad \text{ as \ } n\to\infty~, where G[s]G[\sigma] and E[s]E[\sigma] are explicitly determined constants. This formula is a generalization of the Szegö Limit Theorem. In comparison with the classical theory of Toeplitz determinants some new features appear.  相似文献   

10.
For log\frac1+?52 £ l* £ l* < ¥{\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty , let E*, λ*) be the set {x ? [0,1): liminfn ? ¥\fraclogqn(x)n=l*, limsupn ? ¥\fraclogqn(x)n=l*}. \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}. It has been proved in [1] and [3] that E*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that dimE(l*, l*) 3 \fracl* -log\frac1+?522l*\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}  相似文献   

11.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

12.
Let Hk\mathcal{H}_{k} denote the set {n∣2|n, n\not o 1 (mod p)n\not\equiv 1\ (\mathrm{mod}\ p) ∀ p>2 with p−1|k}. We prove that when X\frac1120(1-\frac12k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{2k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n ? \allowbreak Hk ?(X, X+H]n\in\allowbreak {\mathcal{H}_{k} \cap (X, X+H]} can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when X\frac1120(1-\frac1k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n∈(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.  相似文献   

13.
We study the asymptotic rate of convergence of the alternating Hermitian/skew-Hermitian iteration for solving saddle-point problems arising in the discretization of elliptic partial differential equations. By a careful analysis of the iterative scheme at the continuous level we determine optimal convergence parameters for the model problem of the Poisson equation written in div-grad form. We show that the optimized convergence rate for small mesh parameter h is asymptotically 1–O(h 1/2). Furthermore we show that when the splitting is used as a preconditioner for a Krylov method, a different optimization leading to two clusters in the spectrum gives an optimal, h-independent, convergence rate. The theoretical analysis is supported by numerical experiments.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Let n ≥ 0 be an integer. Then we have for ${x\in(0,\pi)}Let n ≥ 0 be an integer. Then we have for x ? (0,p){x\in(0,\pi)} :
?k=0n (( 2n+1) || (n-k ))\fracsin((2k+1)x)2k+1 £ \frac8n  n!(2n+1)!!.\sum_{k=0}^n { 2n+1 \choose n-k }\frac{\sin((2k+1)x)}{2k+1}\leq\frac{8^n \, n!}{(2n+1)!!}.  相似文献   

15.
Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let jp ( z ): = òx0 x [ f( z) ]2/8 dz\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta , and let \iintc | jp ( z ) - Px1 (z) |p d0x \iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x } in the class \mathop ?n \mathop \prod \limits_n of all polynomials of degree [`(G)]\bar G in case of $p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$p > 2 - \frac{{K^2 + 1}}{{2K^4 }} .  相似文献   

16.
We study the problem of finding the best constant in the generalized Poincaré inequality
lpqr = min\frac|| y¢ ||Lp[0,1]|| y ||Lp[0,1],        ò01 | y(t) |r - 2y(t)dt = 0, {{\rm{\lambda }}_{pqr}} = \min \frac{{\left\| {y'} \right\|{L_p}[0,1]}}{{\left\| y \right\|{L_p}[0,1]}},\quad \quad \mathop {\int }\limits_0^1 {\left| {y(t)} \right|^{r - 2}}y(t)dt = 0,  相似文献   

17.
In this work, we consider the Jacobi-Dunkl operator Λ α,β , a 3 b 3 \frac-12\alpha\geq\beta\geq\frac{-1}{2} , a 1 \frac-12\alpha\neq\frac{-1}{2} , on ℝ. The eigenfunction Yla,b\Psi_{\lambda}^{\alpha,\beta} of this operator permits to define the Jacobi-Dunkl transform. The main idea in this paper is to introduce and study the Jacobi-Dunkl transform and the Jacobi-Dunkl convolution product on new spaces of distributions  相似文献   

18.
There are lots of results on the solutions of the heat equation \frac?u?t = \mathop?ni=1\frac?2?x2iu,\frac{\partial u}{\partial t} = {\mathop\sum\limits^{n}_{i=1}}\frac{\partial^2}{\partial x^{2}_{i}}u, but much less on those of the Hermite heat equation \frac?U?t = \mathop?ni=1(\frac?2?x2i - x2i) U\frac{\partial U}{\partial t} = {\mathop\sum\limits^{n}_{i=1}}\left(\frac{\partial^2}{\partial x^{2}_{i}} - x^{2}_{i}\right) U due to that its coefficients are not constant and even not bounded. In this paper, we find an explicit relation between the solutions of these two equations, thus all known results on the heat equation can be transferred to results on the Hermite heat equation, which should be a completely new idea to study the Hermite equation. Some examples are given to show that known results on the Hermite equation are obtained easily by this method, even improved. There is also a new uniqueness theorem with a very general condition for the Hermite equation, which answers a question in a paper in Proc. Japan Acad. (2005).  相似文献   

19.
In this paper, we develop the basic concepts for a generalized Wiman–Valiron theory for Clifford algebra valued functions that satisfy inside an n + 1-dimensional ball the higher dimensional Cauchy-Riemann system ${\frac{\partial f}{\partial x_0} + \sum_{i=1}^n e_i\frac{\partial f}{\partial x_i}=0}In this paper, we develop the basic concepts for a generalized Wiman–Valiron theory for Clifford algebra valued functions that satisfy inside an n + 1-dimensional ball the higher dimensional Cauchy-Riemann system \frac?f?x0 + ?i=1n ei\frac?f?xi=0{\frac{\partial f}{\partial x_0} + \sum_{i=1}^n e_i\frac{\partial f}{\partial x_i}=0} . These functions are called monogenic or Clifford holomorphic inside the ball. We introduce growth orders, the maximum term and a generalization of the central index for monogenic Taylor series of finite convergence radius. Our goal is to establish explicit relations between these entities in order to estimate the asymptotic growth behavior of a monogenic function in a ball in terms of its Taylor coefficients. Furthermore, we exhibit a relation between the growth order of such a function f and the growth order of its partial derivatives.  相似文献   

20.
We study the asymptotics of the spectrum of the Maxwell operator M in a bounded Lipschitz domain W ì \mathbbR3 \Omega \subset {\mathbb{R}^3} under the condition of the perfect conductivity of the boundary ∂Ω. We obtain the following estimate for the remainder in the Weyl asymptotic expansion of the counting function N(λ,M) of positive eigenvalues of the Maxwell operator M:
N( l, M ) = \frac\textmeas W3p2l3( 1 + O( l - 2 / 5 ) ), N\left( {\lambda, M} \right) = \frac{{{\text{meas }}\Omega }}{{3{\pi^2}}}{\lambda^3}\left( {1 + O\left( {{\lambda^{{{{ - 2}} \left/ {5} \right.}}}} \right)} \right),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号