首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
报道了标题配合物Ni(mnt)(dmbpy)溶液的电子光谱、粉末样品部分IR光谱及量子化学理论研究结果.PM3方法的几何优化表明,该配合物分子为平面结构,其对称性属于C2v点群,基态为自旋三重态.结合ZINDO方法的CI计算,解释了实测电子光谱,发现该配合物在可见区450~550nm存在本质上属于配体dmbpy到配体mnt2-的荷移跃迁(LL′CT).建立了解析复杂分子振动光谱的一种新方法:根据理论计算所得三维动态图象,对于每一个正则模,先给出固定不动的点,再给出关键性的振动类型.在本方法中,用符号η(X)定义了一种新的沿给定方向起伏或跳动式的振动类型.  相似文献   

2.
The molecular structure and binding, as well as infrared and electronic spectroscopic properties for the title complex Cu(mnt)(dmbpy)(mnt(2-)=maleonitriledithiolate, dmbpy=4,4'-dimethyl-2,2'-bipyridine) were studied in this paper. With semi-empirical PM3 and non-empirical DFT (B3LYP/6-311G*) methods, the molecular geometry of the complex was optimized and corresponding vibrational spectra in the gaseous state were obtained. The calculated results derived from DFT were more reasonable than those from PM3. The point group of Cu(mnt)(dmbpy) in isolated gaseous state was C(2), in which Cu(II) adopted a distorted tetrahedral geometry and the dihedral angle between the N(2)Cu and S(2)Cu planes was about 29.814 degrees. And a complete assignment to the IR spectra of such a complicated molecule was exhibited. With ZINDO/S method an electronic spectrum was calculated. The results showed that the calculated values generally agreed with the observed ones. And a detailed explain was made on its electronic spectra.  相似文献   

3.
The molecular structure, electronic and infrared spectroscopic properties for the title complex Co(mnt)(5-NO2-phen) (mnt2-=maleonitriledithiolate, 5-NO2-phen=5-nitro-1,10-phenanthroline) were studied in this paper. With semi-empirical PM3 and non-empirical density functional theory (DFT) methods, the gaseous molecular geometry of the complex was optimized and corresponding vibrational spectra was obtained. The calculated results of structure and frequency from DFT were more reasonable than those from PM3, and the two methods were both agreed with the experimental values. A complete assignment to the IR spectra of such a complicated molecule has been exhibited. An electronic spectra was calculated by ZINDOS/S method. The results showed that the calculated values agreed with the observed ones.  相似文献   

4.
The molecular structure, electronic and infrared spectroscopic properties of the title complex Co(mnt)(5-NO(2)-phen) (mnt(2-) = maleonitriledithiolate, 5-NO(2)-phen = 5-nitro-1,10-phenanthroline) were studied in this paper. With non-empirical density functional theory (DFT) methods, the gaseous molecular geometry of the complex was optimized and corresponding vibrational spectra was obtained. A complete assignment to the IR spectra of such a complicated molecule has been exhibited. And the established scientific method could give a complete and accurate analysis about the vibrational spectra of this complex. An electronic spectra was calculated by ZINDOS/S method. The results showed that the calculated values agreed with the observed ones.  相似文献   

5.
A complete vibrational spectra analysis of the title complex is performed in this paper. The molecular geometry, binding, electron structure and spectroscopic properties for the title complex are studied in detail by PM3 or ZINDO/S method. It has been found that this complex has a planar structure belonging to the symmetry point group C2v and its ground state is the spin doublet state. By comparison with the observed results, it can be concluded that PM3 methods are reliable to calculate the vibrational spectra of this molecule. It is worth noting that the scientific method of assigning vibrational spectra for a complicated molecule containing metal is established herein for the first time by giving main fixed points and pivotal vibrational units. Besides the regular symbols, the new defined symbols eta and M play an important role in describing the vibrational modes accurately and vividly.  相似文献   

6.
甘雄  谢音  任小明  沈玉芳  彭正合  周运鸿 《化学学报》2005,63(14):1307-1312
测量了标题配合物Ni(mnt)(phen)在多种介质中的电子吸收光谱和发射光谱, 使用密度泛函理论的B3LYP方法和分子轨道理论的PM3方法研究了其气态分子几何构型、电子结构和成键, 用ZINDO/S方法通过多组态的组态相互作用(CI)计算解释了实验光谱. 结果表明: 该配合物分子为平面结构, 对称性属于点群C2v, 基态为自旋三重态, 配位键Ni—N和Ni—S为典型的共价结合, Ni的3d电子反馈效应较显著; 可见区的吸收带和发射带(对应于基态电子组态到较低能量激发态组态的跃迁)本质上属于配体phen到mnt2-的荷移跃迁(LL'CT), 紫外区的吸收带本质上属于配体的π→π*跃迁.  相似文献   

7.
The synthesis and characterization of Pd(phen)(bdt) (1) (phen = 1,10-phenanthroline, bdt = 1,2-benzenedithiolate) is presented. 1 crystallizes in the monoclinic space group P2(1)/c, alpha = 11.281(4) A, b = 20.498(8) A, c = 8.374(3) A, beta = 90.234(8), V = 1936.5(13) A(3), Z = 4, and is isostructural with its previously reported related complexes. The ground and low lying excited electronic states in 1 and in the related complexes Pd(bpy)(bdt) (2), Pt(bpy)(bdt) (3), Pt(bpy)(mnt) (4), and Pt(bpy)(edt) (5) [where bpy = 2,2'-bipyridine, edt = ethylene-1,2-dithiolate, and mnt = maleonitriledithiolate] are studied using density functional theory techniques. The electronic properties of 1-5 are studied using the B3LYP functional. Optimized geometries are compared to experimentally observed structures. Time dependent density functional theory (TDDFT) is employed to investigate the excited singlet and triplet states. The calculated energies of the lowest singlet state and the lowest triplet state in all five complexes are in considerable agreement with experimental data. It is shown that variation of both metal and dithiolate-ligand going from 1 and 2 to 3, 4, and 5 has a substantial impact on the spectroscopic and excited-state properties, indicating at the same time the mixed metal/dithiolate character of the HOMO orbital. All the low-lying transitions are categorized as MMLL'CT transitions. The emissive state of all complexes is assigned as a triplet dithiolate/metal to diimine charge transfer with differences in the structures of the emissions resulting from differences in the pi dithiolate orbital of the mnt, bdt, and edt as well as from differences in metal.  相似文献   

8.
Phosphorescence spectra of tris(2,2'-bipyridine) metal compounds, [M(bpy)3]n+, where M = Zn(II), Ru(II), Os(II), Rh(III), and Ir(III), were calculated using a harmonic oscillator approximation of adiabatic potential surfaces obtained by density functional theory (DFT). Using the Huang-Rhys (S) factors calculated by theoretical Franck-Condon analysis of T1 and S0 geometries, we successfully reproduced the emission spectra observed under various conditions by nonempirical calculations. The simulations of well-structured spectra of the Zn(II), Rh(III), and Ir(III) compounds confirmed that the emission originated from localized ligand-centered excited states with considerably distorted geometries of C2 symmetry. The spectrum simulation revealed that the phosphorescence state of [Ru(bpy)3]2+ was localized 3MLCT both in a solution and a glass matrix. Furthermore, a highly resolved phosphorescence spectrum observed for [Ru(bpy)3]2+ doped in a [Zn(bpy)3](ClO4)2 crystal was reproduced well using the geometry of the localized 3MLCT by assuming mode-specific broadening of low-frequency intramolecular vibrational modes. The deuterium effects of the electronic origins of the doped crystal observed by Riesen et al. were in excellent agreement with those predicted for the localized 3MLCT. However, the calculated satellite structures of the localized 3MLCT involving bpy-h8 in [Ru(bpy-h8)(3-x)(bpy-d8)x]2+ (x = 1,2) exhibited only the bpy-h8 vibrational modes, inconsistent with the simultaneous appearance of both bpy-h8 and bpy-h8 modes in the observed spectra. A simulation on the basis of the geometry of the delocalized 3MLCT was in reasonable agreement with an unresolved spectrum observed for a neat crystal of [Ru(bpy)3](PF6)2, which is inconsistent with the assignments of localized 3MLCT on the basis of the electronic origins. The inconsistency of the assignment on the basis of the adiabatic model is discussed in terms of vibronic coupling between the localized 3MLCT states. The 3MLCT state in [Os(bpy)3]2+ seems to vary with the environment: a fully localized 3MLCT in a solution, partially localized in a glass matrix, and delocalized in PF6 salts.  相似文献   

9.
The title system is thoroughly investigated by high-level electronic structure techniques and nuclear quantum dynamics calculations. Equilibrium geometries and harmonic frequencies are determined by coupled-cluster singles doubles [CCSD(T)] calculations with large AO basis sets. A C(4v) distorted geometry is found for the anion in contrast to previous assumptions. This is explained by the bonding situation in the electronic ground state and possible vibronic interactions with higher electronic states. The computed adiabatic electron affinity of 0.73 eV is considerably lower than the currently recommended value. Analysis of the electronic states of the anion shows that the σ* ground state at equilibrium position corresponds to a highly excited state at the neutral's geometry where the ground state is either a very weakly bound or scattering state. If the electron is captured by this latter state, a nonadiabatic transition to the σ* state followed by internal vibrational redistribution could explain the formation of a stable anion. The C(4v) distortion of the equilibrium geometry is essential for the explanation of recently measured photodetachment spectra. Since the distortion leads to six equivalent minima with very low barriers, an anharmonic potential energy surface (PES) of the four relevant vibrational modes is constructed and fitted to CCSD(T) computed energies. The remaining 11 modes are treated as harmonic oscillators. The vibrational dynamics of the anion is studied by diagonalization of the Hamiltonian in the basis of the neutral's eigenstates. The computed photoelectron spectra are in good agreement with recent experiments and demonstrate the quality of the PES and that C(4v) distortion is responsible for the observed irregularities. However, thermal effects play a significant role for the shape of the spectra because many low-lying initial states are populated.  相似文献   

10.
The dyads 3, 4, and 6, combining the Bodipy chromophore with a Pt(bpy)(bdt) (bpy = 2,2'-bipyridine, bdt = 1,2-benzenedithiolate, 3 and 6) or a Pt(bpy)(mnt) (mnt = maleonitriledithiolate, 4) moiety, have been synthesized and studied by UV-vis steady-state absorption, transient absorption, and emission spectroscopies and cyclic voltammetry. Comparison of the absorption spectra and cyclic voltammograms of dyads 3, 4, and 6 and those of their model compounds 1a, 2, 5, and 7 shows that the spectroscopic and electrochemical properties of the dyads are essentially the sum of their constituent chromophores, indicating negligible interaction of the constituent chromophores in the ground state. However, emission studies on 3 and 6 show a complete absence of both Bodipy-based fluorescence and the characteristic luminescence of the Pt(bpy)(bdt) unit. Dyad 4 shows a weak Pt(mnt)-based emission. Transient absorption studies show that excitation of the dyads into the Bodipy-based (1)ππ* excited state is followed by singlet energy transfer (SEnT) to the Pt(dithiolate)-based (1)MMLL'CT (mixed metal-ligand to ligand charge transfer) excited state ([Formula: see text] = 0.6 ps, [Formula: see text] = 0.5 ps, and [Formula: see text] = 1.6 ps), which undergoes rapid intersystem crossing to the (3)MMLL'CT state due to the heavy Pt(II) ion. The (3)MMLL'CT state is then depopulated by triplet energy transfer (TEnT) to the low-lying Bodipy-based (3)ππ* excited state ([Formula: see text] = 8.2 ps, [Formula: see text] = 5 ps, and [Formula: see text] = 160 ps). The transition assignments are supported by TD-DFT calculations. Both energy-transfer processes are shown to proceed via a Dexter electron exchange mechanism. The much longer time constants for dyad 6 relative to 3 are attributed to the significantly poorer coupling and resonance of charge-separated species that are intermediates in the electron exchange process.  相似文献   

11.
A series of [Pt(ii)(diimine)(dithiolate)] complexes of general formula [Pt{X,X'-(CO(2)R)(2)-bpy}(mnt)] (where X = 3, 4 or 5; R = H or Et, bpy = 2,2'-bipyridyl and mnt = maleonitriledithiolate), have been spectroscopically, electrochemically and computationally characterised and compared with the precursors [Pt{X,X'-(CO(2)R)(2)-bpy}Cl(2)] and X,X'-(CO(2)R)(2)-bpy. The study includes cyclic voltammetry, in situ EPR spectroelectrochemical studies of fluid solution and frozen solution samples, UV/Vis/NIR spectroelectrochemistry, hyrid DFT and TD-DFT calculations. The effect of changing the position of the bpy substituents from 3,3' to 4,4' and 5,5' is discussed with reference to electronic changes seen within the different members of the family of molecules. The performance of the mnt complexes in dye-sensitised solar cells has been previously described and the superior performance of [Pt{3,3'-(CO(2)R)(2)-bpy}(mnt)] is now explained in terms of decreased electronic delocalisation through twisting of the bipyridyl ligand as supported by the EPR and computational results.  相似文献   

12.
The photophysical properties of a series of 3,4-ethylenedioxythiophene oligomers (OEDOT) with up to five repeat units are studied as function of conjugation length using absorption, fluorescence, phosphorescence, and triplet-triplet absorption spectroscopy at low temperature in a rigid matrix. At 80 K, a remarkably highly resolved vibrational fine structure can be observed in the all electronic spectra which reveals that the electronic structure of the oligomers strongly couples to two different vibrational modes (approximately 180 and approximately 50 meV). The energies of the 0-0 transitions in absorption, and fluorescence, phosphorescence, and triplet-triplet absorption all show a reciprocal dependence on the inverse number of repeat units. The triplet energies inferred from the phosphorescence spectra are accurately reproduced by quantum chemical DFT calculations using optimized geometries for the singlet ground state (S0) and first excited triplet state (T1). Using vibrational IR and Raman spectroscopy and quantum chemical DFT calculations for the normal modes in the ground state, we have been able to assign the vibrations that couple to the electronic structure to fully symmetric normal modes. The high-energy mode is associated with the well-known carbon-carbon bond stretch vibration, and the low-energy mode involves a deformation of the bond angles within the thiophene rings and a change of C-S bond lengths. Experimentally obtained Huang-Rhys parameters and theoretical normal mode deformations are used to analyze the geometry changes between T1 and S0 and to semiexperimentally predict the geometry in the S1 state for 2EDOT.  相似文献   

13.
M(3)O(4) (M = Sc, Y, and La) were produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and electronic structure calculations. Adiabatic ionization energies (AIEs) of the neutral clusters and vibrational frequencies of the cations were measured accurately for the first time from the MATI spectra. Five possible structural isomers of M(3)O(4) were considered in the calculations and spectral analysis. A cage-like structure in C(3v) point group was identified as the most stable one. The structure is formed by fusing three M(2)O(2) fragments together, each sharing two O-M bonds with others. The ground electronic state of the neutral clusters is (2)A(1) with the unpaired electron being largely a metal-based s character. Ionization of the (2)A(1) state yields a (1)A(1) ion state in a similar geometry to the neutral cluster. The AIEs of the clusters are 4.4556 (6), 4.0586(6), and 3.4750(6) eV for M = Sc, Y, and La, respectively. The observed vibrational modes of the cations include metal-oxygen stretching, metal triangle breathing, and oxygen-metal-oxygen rocking in the frequency range of 200-800 cm(-1).  相似文献   

14.
UV-vis absorption and picosecond time-resolved IR (TRIR) spectra of amido and phosphido complexes fac-[Re(ER2)(CO)3(bpy)] (ER2 = NHPh, NTol2, PPh2, bpy = 2,2'-bipyridine, Tol = 4-methylphenyl) were investigated in conjunction with DFT and TD-DFT calculations in order to understand their ground-state electronic structure, low-lying electronic transitions and excited-state character and dynamics. The HOMO is localized at the amido/phosphido ligand. Amide and phosphide ligands are sigma-bonded to Re, the pi interaction being negligible. Absorption spectra show a weak band at low energies (1.7-2.1 eV) that arises from essentially pure ER(2) --> bpy ligand-to-ligand charge transfer (LLCT). The lowest excited state is the corresponding triplet, (3)LLCT. Low triplet energies and large distortions diminish the excited-state lifetimes to 85 and 270 ps for NHPh and NTol(2), respectively, and to ca. 30 ps for PPh2. nu(CO) vibrations undergo only very small ( bpy MLCT character, is a unique feature of the amido/phoshido complexes, whose lowest excited state can be viewed as containing a highly unusual aminyl/phosphinyl radical-cationic ligand. For comparison, the amino and phosphino complexes fac-[Re(NHPh(2))(CO)3(bpy)]+ and fac-[Re(PPh3)(CO)3(bpy)]+ are shown to have the usual Re --> bpy (3)MLCT lowest excited states, characterized by upshifted nu(CO) bands.  相似文献   

15.
Detailed analysis of the NIR FT-Raman, FT-IR and UV–visible spectra of the dye Chromotrope 2R (C2R) has been performed. The optimized geometry of the dye is theoretically computed with the HF and DFT levels using the standard 6-31G(d) and LANL2DZ basis sets. Optimized geometry and vibrational spectra indicate that the major species in the solid state are the trans form of hydrogen bonded hydrazone tautomer. The effect of H-bonding in stabilizing a particular type of structure is also discussed. The most preferred trans-configuration for its photochemical activity has been demonstrated on the basis of torsional potential energy surface (PES) scan studies. The optimized geometries and calculated vibrational wavenumbers are evaluated via comparison with experimental values. Electronic spectra are in accordance with the nature of the electronic transitions predicted by time-dependent B3LYP/DZ calculations.  相似文献   

16.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

17.
Excitation profiles of SERS (surface-enhanced Raman scattering) and/or SERRS (surface-enhanced resonance Raman scattering) spectral bands of two forms of a Ag-bpy (bpy = 2,2'-bipyridine) surface complex and of [Ru(bpy)3]2+ on Ag nanoparticle (hydrosol) surfaces were determined from the spectra excited in the 458-600 nm region and are reported together with the FT-SERS spectra of the Ag-bpy surface complex and FT Raman spectra of [Ru(bpy)3] Cl2. Seven of the observed 11 fundamentals as well as their first overtones and combination bands are selectively enhanced in SERS of the Ag-bpy surface complex formed in the Ag colloid/HCl/bpy system. The profiles of these bands show a common maximum at approximately 540 nm. The selectively enhanced bands of the Ag-bpy surface complex have nearly the same wavenumbers as those enhanced in the SERRS and resonance Raman spectra of [Ru(bpy)3]2+ upon excitation close to the 453 nm maximum of its MLCT absorption band. Moreover, the intensity patterns of the bpy vibrations of the two species match both in resonance (541 nm excitation for Ag-bpy, 458 nm for [Ru(bpy)3]2+) and in off-resonance (458 and 1064 nm for Ag-bpy, 1064 nm for [Ru(bpy)3]2+). The distinct band shapes of the excitation profiles of the selectively enhanced vibrational modes of the Ag-bpy surface complex, as well as the observation of overtones and combination bands in the SERS spectra upon excitation into this "band", are interpreted in terms of a charge-transfer resonance contribution to the overall SERS enhancement. In view of the near-coincidence of the vibrational modes coupled to the resonant electronic transition of Ag-bpy with those coupled to the MLCT transition of [Ru(bpy)3]2+, the resonant electronic transition is tentatively assigned to a Ag metal to bpy (pi*) CT transition.  相似文献   

18.
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined.  相似文献   

19.
A unique tubular molecular-assembly, constructed by β-cyclodextrin and Na[Ni(mnt)(2)], was identified by X-ray crystallography. Inclusion complex Na[Ni(mnt)(2)]@β-cyclodextrin (1) crystallized in space group P2(1)2(1)2 as hydrated head-to-head, tail-to-tail, and head-to-tail host pipelines with negatively charged [Ni(mnt)(2)](-) guests included, exhibiting a 3?:?1 (host?:?guest) stoichiometry. The hydrophilic transition-metal coordination compound (Na[Ni(mnt)(2)]) was embedded within a hydrophobic cyclodextrin cavity, which resulted in a β-cyclodextrin trimer motif and one-third "empty" host packing model in the crystal. Induced circular dichroism (ICD) spectra of inclusion complex 1 was investigated, which indicated the same penetration pattern of the guests in host cavities in solution phase as that discovered in the crystal structure. In addition, PM3 quantum chemistry calculations strongly supported the co-conformational alignments of inclusion complex 1 that was identified in the crystal as well as in the solution.  相似文献   

20.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号