首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
The perturbation of Dirac particles moving in a constant magnetic field is calculated for simultaneously incident parallel monochromatic circular polarized electromagnetic and gravitational waves. Resonances are found which depend on the initial energy of the charged particles, the magnetic field, and the frequencies of the incident waves. A suited choice of these parameters allows the selection of only one resonance that is proportional to the product of the squares of the amplitudes of both waves. This effect is valid for all bound systems of Dirac particles interacting simultaneously with electromagnetic and gravitational waves. At least in principle this resonance effect can be used to detect the gravitational waves in the lab. For regions of the universe with strong electromagnetic and gravitational waves and suited magnetic fields this effect may play another important part for the acceleration of charged particles.  相似文献   

2.
We present the results of numerical modeling of the effect of amplification of coherent bichromatic radiation due to its cyclotron parametric interaction with a modulated ensemble of electrons in the absence of partial synchronism of waves and particles. The numerical results agree with the analytical conclusions. We find that under certain conditions, the developing parametric instability is accompanied by “driving” of the wave frequencies to the resonance with the particles, which results in significant “peaking” of the instability.  相似文献   

3.
We consider nonlinear gravity-capillary waves with the nonlinearity parameter ? ~ 0.1–0.25. For this nonlinearity, time scale separation does not occur and the kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in [15]. We for the first time compute an analytic expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function of the ratio of surface tension to the gravity acceleration. We show that its two limits—pure capillary and pure gravity waves on a fluid surface—coincide with the previously obtained results. We also discuss relations of the D-cascade model with a few known models used in the theory of nonlinear waves such as Zakharov’s equation, resonance of modes with nonlinear Stokes-corrected frequencies, and the Benjamin-Feir index. These connections are crucial in understanding and forecasting specifics of the energy transport in a variety of multicomponent wave dynamics, from oceanography to optics, from plasma physics to acoustics.  相似文献   

4.
On the case of a plasma layer we show that in a hot plasma with the inhomogeneity of density across the magnetic field there exist eigenmodes for frequencies of hybrid resonance that are combinations of two kinds of waves: The potential long waves of cold plasma and the short-wave Bernstein modes. Their coupling is due to transformation in the region of the hybrid resonance. These eigenmodes can also be travelling waves with energy transmitted in one direction by a long wave and in the opposite one by a short wave. Different types of eigenmodes and corresponding quantization conditions are obtained.  相似文献   

5.
We theoretically analyze resonance processes in an electromagnetic trap (TEM trap) formed by a circularly polarized high-frequency standing field of homogeneous plane waves and a uniform static magnetic field aligned with the direction of wave propagation. The regime of resonance amplification of the trap field by an ensemble of initially nonphased oscillators in the absence of a static magnetic field is described. The regime of resonance acceleration of charges from thermal to relativistic velocities for a bounded particle motion in the presence of a static magnetic field is considered. It is shown that charge oscillations in the trap are similar to flutter in mechanical systems. The efficient energy exchange is stipulated by an M-type interaction mechanism.  相似文献   

6.
The states of a charged particle with a finite free path are determined in the field of a resonant electromagnetic wave. The exact resonance conditions, the modulation and beam instability mechanisms, the charge and current densities (Ohm's law) are obtained for the collisionless beam of resonance particles. Quantum theory of radiation is developed for the resonant adiabatic interaction between a particle and a wave taking into account the interaction with a constant magnetic field induced at the grating surface by the charge and nonresonant waves. The radiation power, the spectrum, and the range of generated frequencies are determined. The results obtained can be used in the plasma and solid-state theories and in electronics.  相似文献   

7.
The problem of surface elastic wave propagation in the Cosserat medium (half-space) is considered. The strained state is characterized by two independent vectors: displacement and rotation. Solutions to the equations of motion are sought in the form of wave packets specified by an arbitrary Fourier spectrum. It is shown that, if the solution is sought in the form of a three-component displacement vector and a three-component rotation vector dependent on time, depth, and longitudinal coordinate, the initial system splits into two systems, one of which describes the Rayleigh wave and the other corresponds to a transverse wave decaying with depth. For both waves, analytical solutions in terms of displacements are obtained. It should be particularly noted that, unlike the Rayleigh wave, the solution for the transverse surface wave has no analogues in the classical elasticity theory. The transverse wave solution is numerically compared with the Rayleigh wave solution.  相似文献   

8.
This paper is devoted to the study of the nonlinear interaction of the waves generated by stimulated Raman scattering in plasma. The influence of nonlinear interaction of plasma wave with plasma electrons on the sum of action densities of waves generated by the laser wave is solved. The electron acceleration in the forward and backward wave fields is described. The change of the electric field of the quasimode of forward and backward plasma waves of Raman scattering given by trapping of plasma particles is calculated. Numerical results are calculated for typical parameters of the PALS experiment.  相似文献   

9.
We study the dynamics of charged particles in the presence of two electrostatic waves propagating obliquely to an ambient magnetic field. The presence of a second wave makes the problem a two-dimensional and time-dependent one with a complicated phase space behavior. We derive a set of difference equations (maps) for the nonrelativistic particle motion limit and numerically study them to elucidate the various aspects of the phase space dynamics. For the general case of oblique propagation, we observe synergistic effects leading to the lowering of the stochasticity threshold and the concomitant reduction in electric field amplitudes for particle heating applications. These results can be understood in terms of the resonance structures associated with the two waves and we obtain approximate analytic expressions for the thresholds. For the degenerate case of omega(1)=nOmega,omega(2)=mOmega (where omega(1),omega(2) are the frequencies of the two waves, Omega is the cyclotron frequency and n,m are integers) and strictly perpendicular propagation, the problem simplifies to a one-and-one-half-dimensional one. We observe the presence of stochastic webs in this situation. (c) 1996 American Institute of Physics.  相似文献   

10.
11.
We present analytical results and numerical simulations for the force exerted on moving atoms in the fields of two counterpropagating waves whose amplitudes or phases are described as stochastic processes. We assume that one field repeats the other with some delay, as would occur when the two fields derive from a common source through a beam splitter and mirrors. We show that, just as with the force exerted by the field of two counterpropagating sequences of π-pulses, or two counterpropagating bichromatic or frequency-modulated waves, the force on an atom in counterpropagating stochastic waves may considerably exceed the force exerted by the field of a single running wave. For comparison we also discuss the interaction of an atom with two counterpropagating waves when one of them is monochromatic and the other one has a stochastic phase. In this case the force substantially exceeds the force exerted by the field of a single running wave but appreciably smaller then the radiative force in the counterpropagating waves in which one field repeats the other with some delay.  相似文献   

12.
S. I. Pavlik 《Laser Physics》2007,17(10):1229-1233
We study the stability of two periodic waves existing in two-level systems. It is shown that one periodic wave is unstable, while the other is stable up to one-dimensional perturbations. The results are obtained using the formalism of supersymmetric quantum mechanics for one-dimensional periodic potentials.  相似文献   

13.
The effect of trapped particles in the beat of two electrostatic waves on the wave dynamics is investigated. A simple analytical model is used. Changes in amplitudes and frequencies of waves and in the distribution function of particles are established. Consequences for the anomalous absorption are discussed. The possibility of the pumping of the wave energy into particles and of the phase bunching of particles appears. An application of the beat-trapping effect in the relativistic beam-plasma interaction is discussed.  相似文献   

14.
We discuss a new acceleration or energization mechanism of charged particles in space and astrophysical plasmas. In the presence of an electrostatic potential gradient and a circularly polarized electromagnetic monochromatic wave, particles are accelerated efficiently by keeping cyclotron resonance with the wave due to the electrostatic dragging force. In addition, particles can propagate against the electrostatic potential even if they have smaller parallel energy. This mechanism is potentially widely applicable, in terms of particle acceleration and transport, to various space and astrophysical phenomena, such as shock environment and short-large amplitude magnetic structures. We introduce the basic physical process of the acceleration or energization mechanism theoretically and numerically.  相似文献   

15.
A model of heterogeneous medium taking into account the friction between the particles and liquid, as well as the relaxation of the small-size particles to the equilibrium on the stress, has been proposed to describe the propagation of the elastic waves in a suspension. A system of wave equations describing the propagation of a plane longitudinal wave has been formulated for the components of the medium. Analytical expressions for the sound velocity in a suspension has been obtained in the approximation in which the particles are completely carried away by liquid in the limiting cases in which the particles are in equilibrium under stress with the liquid or equilibrium is absent. The dependence of the sound velocity in the medium on the volumetric portion and the size of the inclusions has been studied. The obtained results agree with the experimental data and obtained analytical expressions for the sound velocity. The dynamics of the components of the medium at the propagation of the plane longitudinal monochromatic wave has been studied.  相似文献   

16.
《Physics letters. A》2014,378(5-6):577-583
We explore the form of rogue wave solutions in a select set of case examples of nonlinear Schrödinger equations with variable coefficients. We focus on systems with constant dispersion, and present three different models that describe atomic Bose–Einstein condensates in different experimentally relevant settings. For these models, we identify exact rogue wave solutions. Our analytical findings are corroborated by direct numerical integration of the original equations, performed by two different schemes. Very good agreement between numerical results and analytical predictions for the emergence of the rogue waves is identified. Additionally, the nontrivial fate of small numerically induced perturbations to the exact rogue wave solutions is also discussed.  相似文献   

17.
Soliton molecules were first discovered in optical systems and are currently a hot topic of research. We obtain soliton molecules of the(2+1)-dimensional fifth-order Kd V system under a new resonance condition called velocity resonance in theory. On the basis of soliton molecules, asymmetric solitons can be obtained by selecting appropriate parameters. Based on the N-soliton solution, we obtain hybrid solutions consisting of soliton molecules,lump waves and breather waves by partial velocity resonance and partial long wave limits. Soliton molecules,and some types of special soliton resonance solutions, are stable under the meaning that the interactions among soliton molecules are elastic. Both soliton molecules and asymmetric solitons obtained may be observed in fluid systems because the fifth-order Kd V equation describes the ion-acoustic waves in plasmas, shallow water waves in channels and oceans.  相似文献   

18.
Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.  相似文献   

19.
The possibility of unlimited surfatron acceleration of nonrelativistic charged particles by slow electromagnetic waves has been revealed. The capture into such an acceleration regime has been described. The region of the parameters in which the effect of the capture and acceleration exists has been considered. The contribution of this mechanism to an increase in the energy of charged particles in the Earth’s magnetosphere has been estimated.  相似文献   

20.
We present experiments on the propagation of a wave front in a fluid forced by Faraday waves. The vertical periodical modulation of the acceleration induces flows in the system that modifies the Belousov-Zhabotinsky (BZ) chemical reaction dynamics. Phase waves spreading through standing waves with different symmetries results in superdiffusion. The anomalous diffusion is characterized in terms of a non-integer transport exponent which is compared with exponents resulting from tracer particles trajectories undergoing rapid, distant jumps called Lévy flights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号