首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现油菜叶片中叶绿素含量的快速无损检测,开发了手持式多光谱成像系统用于采集油菜叶片在460,520,660,740,840和940 nm 六个波段的光谱图像。将一台能够采集可见光/近红外(380~1 023 nm)512个波段光谱图像但是价格高昂且体积大的室内高光谱成像系统作为参考仪器,将手持式多光谱成像系统作为目标仪器后,采用伪逆法(pseudo-inverse method)求得高光谱成像系统和多光谱成像系统两台仪器之间的转换矩阵F,从而实现6个波段的多光谱图像向512个波段的高光谱图像的重构,提高了手持式设备的光谱分辨率。运用偏最小二乘回归算法(PLSR)建立了重构的光谱与油菜叶片的叶绿素含量之间的关系模型。结果表明,重构的可见光范围内的光谱反射率与叶绿素浓度之间具有很强的相关性,PLSR回归模型建模集的决定系数R2c为0.82,建模集均方根误差RMESC为1.98,预测集的决定系数R2p为0.78,预测集均方根误差RMESP为1.50,RPD为2.14。虽然应用本文开发的手持式成像系统结合PLSR模型实现油菜叶绿素含量快速无损预测的精度低于基于室内高光谱成像系统获得的高光谱图像建立的PLSR模型(R2c,RMESC,R2p,RMESP和RPD分别为0.90,1.41,0.82,1.36和2.37),但是明显优于基于原始多光谱成像系统4个波段(460,520,660和740 nm)反射率建立的PLSR模型得到的结果(R2c,RMESC,R2p,RMESP和RPD分别为0.78,2.06,0.72,1.85和1.88)。表明光谱重构技术可提高多光谱成像预测油菜叶绿素含量的精度,并且与室内高光谱成像系统相比,开发的手持式设备具有体积小、成本低廉和操作简便等优点,可为田间油菜叶片的生理状态和养分检测及可视化表达提供技术支持。  相似文献   

2.
高光谱卫星数据模拟是卫星遥感数据模拟的重点研究方向,基于星载多光谱数据和地物光谱先验知识是一种快速模拟高光谱数据的方法,但数据模拟精度受传感器光谱指标的限制。文章针对EO-1/ALI的可见光/近红外波长范围进行实验,研究了波段数量、半波宽度和波长位置等光谱指标与植被光谱模拟精度的关系,分析了两者之间的变化规律。研究表明,光谱指标决定了植被光谱特征提取,是影响光谱模拟精度的直接原因。文章总结了适于光谱重构模型的光谱参数范围,实验结果有利于提高植被光谱模拟精度。该结论可用于多光谱传感器的性能评价及其分光滤色结构的改进。  相似文献   

3.
羊肉挥发性盐基氮的高光谱图像快速检测研究   总被引:3,自引:0,他引:3  
挥发性盐基氮(TVB-N)通常被作为评价羊肉新鲜度的理化参考指标。为了揭示高光谱图像技术(HSI)快速检测羊肉新鲜度的可行性,采集了71个新鲜度具有代表性的羊肉样品的漫反射高光谱图像(400~1 000 nm),并利用半微量定氮法测定了其挥发性盐基氮(TVB-N)的化学值。选择感兴趣区域(ROIs)提取样品的代表性光谱,采用含量梯度法划分校正集和预测集,比较不同的光谱预处理方法,比较逐步多元线性回归(SMLR)、偏最小二乘(PLSR)和主成分分析(PCR)建模方法,建立并验证了TVB-N的校正模型。结果表明,利用多元散射校正(MSC)、一阶导数、Savitzky-Golay(S-G)平滑及中心化处理结合的预处理方法,PLSR和PCR模型都可以实现对羊肉TVB-N的定量检测。对于建立的PLSR模型,采用的预处理方法为MSC、15点2次S-G平滑、1阶导数和中心化相结合的方法,选择的潜变量因子数为11,获得的校正集的相关系数(R)和校正均方根误差(RMSEC)分别为0.92和3.00 mg·(100 g)-1,预测集的相关系数(r)、预测均方根误差(RMSEP)和相对分析误差(RPD)分别为0.92,3.46 mg·(100 g)-1和2.35。研究表明,高光谱图像技术可用于准确快速地检测分析羊肉中新鲜度关键指标TVB-N的含量。该研究为采用高光谱图像技术进一步分析羊肉新鲜度其他指标、改善TVB-N的建模效果及在实际生产中应用该技术提供了基础。  相似文献   

4.
实测高光谱和HSI影像的区域土壤盐渍化遥感监测研究   总被引:3,自引:0,他引:3  
通过典型研究区不同盐渍化土壤光谱反射率数据的变换和分析,选择与土壤含盐量响应敏感波段,建立实测高光谱土壤含盐量反演模型,以校正HSI影像建立的土壤含盐量反演模型。结果表明:实测高光谱土壤含盐量反演模型与HSI影像土壤含盐量反演模型均有较好的精度,模型判定系数(R2)均高于0.57,且模型稳定性较好。校正后的HSI影像土壤含盐量反演模型,模型判定系数有了较大提高,R2从0.571提升至0.681,且通过了0.01的显著性水平,均方根误差(RMSE)值为0.277。模型能够较好地提高区域尺度条件下土壤盐渍化监测精度,运用此方法开展盐渍化土壤定量遥感监测是可行的。  相似文献   

5.
种子活力对于农业发展至关重要,而甜玉米种子普遍存在活力较低且不耐贮藏的问题。因此,及时准确地对甜玉米种子活力进行检测尤为重要。电导率测定法作为一种传统的种子活力检测方法,存在对种子有一定破坏性、耗时较长、重复性不佳等缺点。针这些问题,尝试利用可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法建立甜玉米种子电导率快速、无损且精确的检测方法。以高温高湿老化的绿色超人甜玉米种子为试验材料,先通过可见-近红外高光谱成像系统采集种子的高光谱图像和进行电导率测定试验,随后对高光谱图像进行黑白板校正、提取感兴趣区域,获取光谱反射率数据。利用多种预处理方法分别为标准正态变量变换(SNV)、二阶导(SD)、一阶导(FD)、和多元散射校正(MSC)建立甜玉米种子电导率的偏最小二乘回归(PLSR)模型,比较分析并筛选出最适预处理方法。再通过连续投影算法(SPA)及遗传算法(GA)对MSC预处理后的高光谱波段进行筛选提取,基于选出的特征波段建立PLSR模型,并与全波段(Full)PLSR模型进行对比分析,得到与甜玉米种子电导率相关性最高的高光谱波段组合,最终确立一种能够预测甜玉米种子电导率的方法体系。实验结果显示:不同预处理方法(SNV,FD,SD和MSC)建立的PLSR模型性能有所差异,其中MSC-PLSR模型的表现最优秀,其校正决定系数和预测决定系数分别为0.983和0.974,相应的校正均方根误差和预测均方根误差分别为0.165和0.226。进一步分析MSC-Full-PLSR,MSC-SPA-PLSR和MSC-GA-PLSR模型,发现GA能够将全光谱的853个波段压缩至25个有效波段,所建立的MSC-GA-PLSR模型仍表现优秀,其校正决定系数和预测决定系数分别为0.976和0.973,相应的校正均方根误差和预测均方根误差分别为0.194和0.212。实验结果表明:基于可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法实现对甜玉米种子电导率的预测存在一定的可行性。该研究为甜玉米种子电导率的快速、无损且精确的检测提供一定的理论支持。  相似文献   

6.
针对稀疏表示高光谱检测算法性能受背景字典影响较大的问题,充分利用高光谱图像空间信息和光谱主成分信息,提出了一种基于字典学习的稀疏表示异常检测算法。首先利用主成分分析提取高光谱数据的主特征,建立目标主成分空间,并证明了在主成分空间进行字典学习稀疏重构的可行性;然后在主成分空间内构造基于K-SVD算法的训练字典,改善了背景字典性能;采用正交匹配算法重构主成分分量,利用主成分分析反变换得到待检测像元重构光谱,增强了高光谱图像的局部异常特性;最后,基于重构误差异常特性实现高光谱图像异常检测。仿真结果证明了该方法的有效性。  相似文献   

7.
Hai-Zhu Pan 《中国物理 B》2022,31(12):120701-120701
Benefiting from the development of hyperspectral imaging technology, hyperspectral image (HSI) classification has become a valuable direction in remote sensing image processing. Recently, researchers have found a connection between convolutional neural networks (CNNs) and Gabor filters. Therefore, some Gabor-based CNN methods have been proposed for HSI classification. However, most Gabor-based CNN methods still manually generate Gabor filters whose parameters are empirically set and remain unchanged during the CNN learning process. Moreover, these methods require patch cubes as network inputs. Such patch cubes may contain interference pixels, which will negatively affect the classification results. To address these problems, in this paper, we propose a learnable three-dimensional (3D) Gabor convolutional network with global affinity attention for HSI classification. More precisely, the learnable 3D Gabor convolution kernel is constructed by the 3D Gabor filter, which can be learned and updated during the training process. Furthermore, spatial and spectral global affinity attention modules are introduced to capture more discriminative features between spatial locations and spectral bands in the patch cube, thus alleviating the interfering pixels problem. Experimental results on three well-known HSI datasets (including two natural crop scenarios and one urban scenario) have demonstrated that the proposed network can achieve powerful classification performance and outperforms widely used machine-learning-based and deep-learning-based methods.  相似文献   

8.
中心波长和带宽是影响成像光谱仪数据定量化应用水平的两个重要光谱性能参数。针对覆盖光谱范围较窄的可见光与近红外波段成像光谱仪,提出了一种利用人工光谱吸收靶标进行光谱定标的方法,论证和建立光谱吸收靶标光谱定标方法的数学模型。在同一环境下利用成像光谱仪和ASD光谱仪对地面光谱吸收靶标进行准同步光谱测量,并进行反射率计算,然后通过光谱匹配计算中心波长偏移量和带宽变化量。利用该方法对设计带宽为6 nm的可见光与近红外波段的成像光谱仪进行了地面定标实验。实验结果表明,该方法能够作为外场光谱定标的辅助手段,提高成像光谱仪的定量化应用水平。  相似文献   

9.
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.  相似文献   

10.
番茄植株在生长过程中受病虫害的侵染,将导致番茄减产和种植户的经济效益降低,该研究用高光谱技术结合化学计量学方法,实现了番茄叶片斑潜蝇虫害的快速识别。搭建了简易的高光谱成像系统,包括光源单元、高光谱图像采集单元和数据处理单元,用该系统获取番茄叶片的高光谱图像,对高光谱图像进行校准,并从每一幅图像中提取光谱信息。分别采用了光谱角匹配(SAM)分析方法和光谱红边参数判别分析(DA)方法识别番茄叶片斑潜蝇虫害。在SAM分析中,对高光谱数据进行了归一化预处理,以消除多余信息,增加样品之间的差异。比较了以不同番茄叶片样品的反射光谱作为测试光谱时,虫害识别效果的差异,当以受到斑潜蝇侵染的番茄叶片的平均反射光谱作为测试光谱时,虫害识别的正确率较高,达到96.5%。在光谱红边参数判别分析中,从光谱数据中提取了红边位置、红边振幅、最小振幅、红边面积、红谷位置和红边振幅/最小振幅6组红边信息,利用判别分析方法建立番茄叶片斑潜蝇虫害的判别模型,比较了距离判别、Fisher判别、Bayes判别分析方法的判别效果,使用距离判别分析建模的判别正确率最低,判别正确率为88.0%,使用Fisher判别分析建模的效果最佳,判别正确率为96.0%。研究结果表明,采用高光谱技术识别番茄叶片斑潜蝇虫害具有可行性。  相似文献   

11.
高光谱探测绿色涂料伪装的光谱成像研究   总被引:6,自引:0,他引:6  
基于现有伪装涂料与植被反射光谱的本质差异,提出一种可有效识别当前所有绿色伪装涂料的高光谱成像方法.通过分析绿色伪装涂料与被子植物叶片的反射光谱及其一阶微分谱的差异,确定了星载和机载高光谱遥感探测中,可见光波段的绿色反射峰和780~1 300 nm的“近红外高原”波段反射率的波动性是识别绿色伪装涂料的有效光谱特征.对“近红外高原”波段的反射光谱进行成像是高光谱探测实现伪装目标可视识别的可行方法,尤其是对反射光谱一阶微分处理后进行成像可更加有效地识别植被环境中的绿色伪装涂料.  相似文献   

12.
基于叶片高光谱特性分析的树种识别   总被引:8,自引:0,他引:8  
高光谱遥感技术的出现将为解决森林树种的精细识别难题提供有效的途径。利用高光谱遥感技术进行树种鉴别时,光谱特征的选择及提取是个非常重要的过程。与多光谱数据相比,高光谱数据具有波段多、数据量大、冗余度大等特点。该文利用光谱微分法对原始光谱数据进行处理,分析不同树种原始光谱、光谱一阶微分和光谱二阶微分曲线图,从中选择差异较大的波段用于鉴别不同树种。最后利用欧氏距离对所选择的波段进行检验识别不同树种的效果,检验的结果显示选择的波段能有效地区分不同树种。区分不同树种的有效波段大都位于近红外波段, 并且差异最大的波段也是近红外波段,其分别为1 657~1 666和1 868~1 877 nm。  相似文献   

13.
对马铃薯关键生育期的高光谱遥感图像进行特征提取和分析,提出了一种快速区分不同马铃薯品种的方法。以两个早熟和中熟马铃薯品种为研究对象,采集其块茎形成期、块茎膨大期和淀粉积累期的冠层反射光谱曲线,对实测反射光谱曲线进行Savitzky-Golay滤波平滑和一阶微分处理,以高光谱位置参数、振幅参数、面积参数、宽度参数和反射率参数为研究指标,根据21个高光谱特征参数的贡献率大小,评价了其区分不同马铃薯品种的优劣。结果表明:(1)同一类高光谱特征参数在不同生育期区分马铃薯品种的能力不同: 高光谱位置参数、宽度参数和反射率参数在块茎膨大期区分不同马铃薯品种的能力最强,淀粉积累期次之;高光谱振幅参数和面积参数在淀粉积累期的区分能力最强,块茎膨大期次之,五类高光谱特征参数在块茎形成期的区分能力均最差。(2)同一生育期5类高光谱特征参数区分马铃薯品种的能力也存在差异。在块茎形成期,五类高光谱特征参数的区分能力从强到弱依次为:反射率参数>振幅参数>面积参数>宽度参数>位置参数;在块茎膨大期和淀粉积累期,从强到弱依次为:面积参数>振幅参数>反射率参数>宽度参数>位置参数。综合能力从强到弱依次为:面积参数>振幅参数>反射率参数>宽度参数>位置参数。  相似文献   

14.
开展了低温冷冻和机械损伤条件下马铃薯高光谱图像特征响应特性研究。采用卓立汉光公司Image~λ“谱像”系列高光谱相机获取完好的、低温冷冻和机械损伤条件下的光谱波段范围为387~1 035 nm的马铃薯高光谱图像;截取校正后的像素尺寸大小为60×60的马铃薯高光谱中部完好的图像并计算该区域平均反射率值;冻伤的马铃薯样本的反射光谱曲线在440,560和680 nm附近有明显吸收峰;机械损伤样本在560和680 nm附近有明显吸收峰,在680 nm附近吸收峰谷值明显低于冻伤样本;完好的马铃薯样本反射光谱曲线相对较为平滑,在560和680 nm附近未见明显吸收峰;撞伤样本在440,560和680 nm附近存在吸收峰,而在410 nm附近有一个明显的反射峰。四类马铃薯样本的反射光谱曲线特征峰值表现出一定的指纹特性,因而可以被用于后续品质特征检测分析使用。由于仪器或检测环境、光照强弱等因素影响,光谱数据中掺杂噪声,因此采用化学计量学预处理方法消除噪声的影响;随机选取70%的马铃薯四类样本的反射光谱作为训练数据,剩余的30%作为测试集;接着,利用极端梯度提升算法、类型提升算法和轻量梯度提升机算法来获取马铃薯高光谱图像的有效特征波谱,减少高维海量高光谱数据对后续品质分类模型的影响;最后,将提取到的有效特征波长构建马铃薯品质判别模型。在建立的分类模型中,使用的轻量梯度提升机+逻辑斯蒂回归达到最高的判别精度98.86%。该研究为将来高光谱图像成像技术在现代农业生产加工过程中马铃薯品质有效监测与控制提供理论基础和技术支撑。  相似文献   

15.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

16.
旨在获取刚竹毒蛾危害下的毛竹叶片光谱特征波长,以助于该虫害的有效、准确识别。将于福建省顺昌县实测的105条高光谱数据随机划分为实验组(71条)和验证组(34条)。基于实验组数据,利用单因素方差分析获取健康、轻度危害、中度危害、重度危害等虫害等级间具有极显著差异的波长;结合常用遥感卫星的波段设置对上述波长进行筛选,采用欧式距离、相关系数及光谱角匹配等3种方法判定其虫害判别能力,获取特征波长,并引入验证组样本对其予以验证。结果表明:(1)受害叶片的光谱反射率明显低于健康叶片,虫害等级越高,其反射率越低;(2)受害叶片的光谱特征变化较大,随着虫害等级的上升,其光谱曲线中的“绿峰”及“红谷”趋于消失,“红边”斜率逐渐减小;(3)确定原始光谱703.43~898.56 nm及一阶微分光谱497.68~540.72,554.53~585.25和596.24~618.23 nm为刚竹毒蛾危害下的毛竹叶片光谱特征波长,其对该虫害具有较强的判别能力。该研究从叶片尺度剖析了寄主对刚竹毒蛾的响应机理,是“地-天”耦合的理论基础,可为虫害遥感监测技术体系的建立提供重要依据。  相似文献   

17.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

18.
花叶病是苹果叶片常见的病毒性病害,患病叶片的花青素含量出现异常。以叶片花青素含量作为病害严重程度的定量化指标,使用高光谱成像技术获取感染花叶病的苹果叶片的高光谱图像,分析叶片的光谱特征,通过任意两个波段的反射率的不同数学组合,构建并筛选对染病叶片花青素含量高度敏感的最优光谱指数,进而建立苹果叶片花青素含量的高光谱估算模型,最终实现苹果叶片花青素含量分布状况的可视化表达。结果表明,随着病害严重程度的增大,苹果叶片的花青素含量升高;叶片染病区域的光谱反射率在整个可见光区域明显增加,而且出现了红边蓝移现象。通过两两波段组合构建的三种光谱指数(NDSI(770,722),RSI(717,770),DSI(581,520))与苹果叶片花青素含量的相关系数绝对值均达到0.8以上。在构建的四种苹果叶片花青素含量估算模型中,选用三个光谱指数为参数、并使用偏最小二乘回归方法建立的Anth-PLSR模型精度最高(R2=0.823, RMSE=0.056)。采用Anth-PLSR模型对患病叶片的高光谱图像进行逐像元解算,得到苹果花青素含量分布图。进一步通过叶片花青素含量分布图计算苹果叶片整叶的花青素含量平均值,作为苹果叶片健康程度的定量化指标。此外,通过提取整叶光谱均值、使用同样模型可简洁有效地估算苹果整叶花青素含量平均值。为苹果叶片花叶病病害监测提供了一种直观、快速的技术手段。  相似文献   

19.
一种新的光谱参量预测黑土养分含量模型   总被引:2,自引:0,他引:2  
我国东北黑土富含养分,随着土壤数字制图、精确农业和土壤资源调查等研究的深入,引入航空高光谱数据并提供科学的预测结果成为研究热点。数据源为CASI-1500航空高光谱成像系统,光谱范围380~1 050 nm,空间分辨率1.5 m。在黑龙江建三江地区采集59个土壤样本,化验获得有机质、全氮、全磷和全钾含量数据,选择eps-regression支持向量机模型,BP神经网络和PLS1最小二乘回归模型,建立光谱与含量的机器学习模型。通过评价3种模型的预测精度,选用支持向量机方法,对航空高光谱数据进行全氮、全磷和全钾的信息提取,采用神经网络方法,反演了有机质信息。研究表明:以光谱统计量、光谱特征值和光谱信息量为大类指标,所选取的18个子指标,能够反映土壤光谱的综合情况,是一种新的土壤光谱数据处理方法。有机质和全钾信息提取精度最高的算法是神经网络法,误差分别为1.21%和0.81%,而支持向量机算法在提取全氮和全磷信息时,验证样本的实测均值和预测均值完全吻合,精度最高。评价航空高光谱提取土壤养分的综合精度,有机质、全氮、全磷和全钾提取误差分别为5.25%,6.05%,2.74%和8.90%,在全磷反演中精度最高。  相似文献   

20.
不同光温环境下玉米苗期叶片的高光谱特性响应分析   总被引:1,自引:0,他引:1  
光温环境胁迫是影响作物优质高产的一个主要制约因素,传统的作物胁迫监测,敏锐性不足、耗时费力且多为有损检测。近年来随着信息技术的快速发展,高光谱技术能够快速无损的获取作物生理信息,并对逆境胁迫响应进行动态监测,为现代农业的精准化生产和智能化决策提供了数字化支撑,对实现传统农业向精准化、数字化的现代农业转变具有重要意义。以玉米苗期为研究对象,获取不同光温环境下叶片的高光谱数据和生理参数,探究玉米苗期叶片对不同光温环境的响应规律,进行高光谱差异性分析,并构建生理参数的高光谱反演模型。利用相关分析法筛选光谱敏感波段,采用多元散射校正(MSC)、标准正态变量变换(SNV)、Savitzky-Golaay(S-G)平滑相结合的预处理方法,分别与偏最小二乘回归法(PLS)、主成分回归法(PCR)、逐步多元线性回归法(SMLR)三种建模方法组合,以模型相关系数和均方根误差作为模型效果评价指标,探索高光谱反演叶片生理参数模型的最优方法。结果表明:不同光温环境下玉米的高光谱特性在整体上变化趋势一致,但仍存在差异,在500~700 nm波段内,光谱反射率的升高表明光强的增强;在760~900 nm波段内,光谱反射率的升高表明温度的增强;且光温胁迫环境的变化,均可反映在高光谱特性上,波段760~900 nm内光谱的反射率在高温胁迫环境下较高,在弱光胁迫环境下较低,在低温胁迫环境下反射率显著降低;所构建的SPAD和Fv/Fm的反演模型中,建模最优方法为PLS-MSC-SG,模型验证集相关系数分别为0.958和0.976,训练集相关系数分别为0.979和0.995。模型的预测性精度较高,表明利用高光谱技术,可以实现光温环境胁迫下玉米植株的定量监测,提高田间精细化管理水平,为玉米优质高产的智能化管理提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号