首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Abstract

Mid-infrared spectra in the ranges 400–1800 and 2700–4600 cm?1 of ethanol samples in diamond anvil cells at ambient temperature and pressures up to 11 GPa are reported. The freezing pressure is confirmed to be 1.8 GPa, and, unlike methanol, the resulting solid is crystalline rather than glassy. No further phase transitions are observed in this pressure range. The wave number shifts of 30 selected peaks with pressure are deduced, and their small magnitudes indicate that only minor distortions of the molecules occur. The effects of the strengthening of the intermolecular hydrogen bonds with pressure on the internal modes are briefly discussed.  相似文献   

2.

The optical absorption spectra of a composite material formed by silver nanoparticles of 12.1 nm radius embedded in a phosphate glass have been studied as a function of hydrostatic pressure up to 11 GPa. The confinement induces a strong absorption peak, the surface plasmon resonance, which is red shifted by the application of pressure. Upon pressure release, a hysterisis is observed persisting even at ambient conditions. The pressure-induced changes in the properties of both the glass and the silver contribute to the observed behaviour, the irreversibility of which, is attributed to the pressure induced irreversible densification of glass.  相似文献   

3.
The Raman spectra of a naphthalene crystal have been measured at room temperature in the pressure range up to 20 GPa. The pressure shift and Grüneisen parameters for intermolecular and intramolecular phonons have been determined. The maximum rate of the pressure shift for intermolecular phonons is 44 cm?1/GPa, and the rate of the pressure shift for intramolecular phonons lies in the range from 1 to 11 cm?1/GPa for different modes. The pressure dependence of the phonon frequencies for direct and inverse pressure variations has a hysteresis in the pressure range from 2.5 to 16.5 GPa. It has been shown that the linear dependence of the intermolecular phonon frequency on the crystal density has a peculiarity, which indicates a possible phase transition at a pressure of 3.5 GPa. The pressure dependence of intramolecular phonons related to the stretching vibrations of hydrogen atoms exhibits features that are characteristic of intermolecular phonons, which is associated with the influence of shortened distances between the hydrogen atoms of the neighboring molecules on the intermolecular interaction potential.  相似文献   

4.
Abstract

The effect of high hydrostatic pressure, up to 12GPa, on the intramolecular phonon frequencies and the material stability of the two-dimensional tetragonal Cm polymer has been studied by means of Raman spectroscopy in the spectral range of the radial intramolecular modes (200-800cm?1). A number of new Raman modes appear in the spectrum for pressures ~ 1.4 and ~ 5.0 GPa. The pressure coefficients for the majority of the phonon modes exhibit changes to lower values at P=4.0 GPa, which may be related to a structural modification of the 2D polymer to a more isotropic phase. The peculiarities observed in the Raman spectra are reversible and the material is stable in the pressure region investigated.  相似文献   

5.
Abstract

The temperature and enthalpy of melting for poly(ethy1ene oxide) have, for the first time, been studied as a fuction of pressure up to 1 GPa by means of differential scanning calorimetry. The initial increase of the temperature of melting with increasing pressure is 64 K/GPa, whereas the enthalpy decreases by 40% in the 1 GPa pressure range. Using Clausius-Clapeyrons equation the volume change on melting is estimated to be 1.5 cm3/mol. The glass transition temperature Tg for polystyrene has also been studied by the same technique for pressures up to 0.1 GPa. The measurements show that Tg increases with increasing pressure by 250 K/GPa.  相似文献   

6.
ABSTRACT

Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1?mm diameter and 0.7?mm high) high-boron-content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7?GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q?=?19 Å?1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5% at 13.7?GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.  相似文献   

7.
Abstract

High pressure electrical measurements were conducted in the antiferromagnetic insulator CoI, using a miniature Diamond Anvil Cell (DAC). The existence of a Mott Transition predicted from high pressure 129I Mgssbauer Spectroscopy (MS)1 has been verified. At about 8 GPa the system becomes metal1ic as evidenced by the temperature behavior of the conductivity. The conductivity at room temperature, however, still increases with increasing pressure, leveling off at 11 GPa. The metallic behavior in the 8 -11 GPa is explained by coexistence of metallic and insulating clusters via a percolating process. Above 11 GPa the material is completely metallic. This mechanism is consistent with the MS findings.  相似文献   

8.
Abstract

Well—resolved Raman spectra of crystalline sulfur have been recorded in a diamond anvil cell (DAC) in the pressure range from atmospheric pressure to 50 GPa at room temperature, using an 0.6 m triple spectrograph and a CCD multichannel detector. The spectra indicate two phase transitions in the pressure region between 10 and 15 GPa.  相似文献   

9.
Abstract

Brillouin and Raman Scattering Spectra in SiO2 and GeO2 glasses have been measured in a diamond anvil cell up to pressures of 14 GPa. The elastic properties and equation of state for each glass type were obtained from the Brillouin scattering measurements with respect to pressure. Both elastic constants and compressibility of SiO2 and GeO2 showed anomalous behavior with respect to pressure. This anomalous behavior is reconciled with a model based on the pressure dependent bending of the oxygen angles in both glass types. The Raman measurements corroborate the conclusions from the Brillouin scattering results, namely that the SiO2 and GeO2 bond angles are changing with pressure or the oxygen angle distribution is changed without bond breaking.  相似文献   

10.
Abstract

Amorphous, ferromagnetic, invar like, Fe60 Mn20 B20 alloy has been investigated. Two kinds of experiments were carried out for this alloy. The first, using high pressure technique, revealed the influence of pressure on B(H) dependencies within the wide range of temperature under pressure of 0.5 GPa. From the magnetization curves obtained during these experiments the decrease of spontaneous magnetization caused by applied pressure 0.5 GPa at temperature -180°C has been calculated at the rate about 7 10?11T/Pa.

In the second kind of experiments the measurements of volume magnetostriction up to 720 kA/m magnetic field intensity have been done. Volume magnetostriction coefficient at temperature 77.4 K has been determined to be about 2 10?11 [A/m]?1.  相似文献   

11.
《光谱学快报》2013,46(2):199-210
Infrared spectra in the wavenumber ranges 100–1800 and 2700–4800 cm?1 are reported for bromoform samples in diamond anvil cells at ambient temperature and at pressures up to 10 GPa. The freezing pressure is estimated to be 0.13 ± 0.02 GPa. The spectra appear to evolve smoothly and no major discontinuities are detected. The dependence on pressure of eleven peak wavenumbers (five fundamentals and six combinations) is presented. All modes show small percentage increases in wavenumber over this pressure range, except for the degenerate bend, ν6, which exhibits a 20% increase, suggesting that the equilibrium Br-C-Br angles may be slightly changing with increasing pressure.  相似文献   

12.
Mid-infrared spectra in the ranges 400-1800 and 2700-4000 cm-1 are reported for benzene samples in diamond anvil cells at ambient temperature and pressures up to 10 GPa. The freezing pressure is confirmed to be 0.1±0.05 GPa. Changes in the spectra and in the sample appearance indicate that sluggish solid state phase transitions occur near 2.0 and 4.0 GPa. The wave number shifts with pressure for 27 selected peaks are plotted. Their small increases show that only minor distortions of the molecules occur, and there is no evidence of any weakening of intramolecular bonds in this pressure range.  相似文献   

13.
Raman spectra of a crystal of L ‐leucine, an essential amino acid, were obtained for pressures between 0 and 6 GPa. The results show anomalies at three pressure values, one between 0 and 0.46 GPa, another between 0.8 and 1.46 GPa, and a third at P ∼ 3.6 GPa. The first two anomalies are characterized by the disappearance of lattice modes (which can indicate occurrence of phase transitions), the appearance of several internal modes, or the splitting of modes of high wavenumbers. The changes of internal modes are related to CH and CH3 unit motions as well as hydrogen bonds, as can be inferred from the behavior of bands associated with CO2 moieties. The third anomaly is a discrete change of the slopes of the wavenumber versus pressure plots for most modes observed. Further, decompression to ambient pressure generates the original Raman spectrum, showing that the pressure‐induced anomalies undergone by L ‐leucine crystals are reversible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the first is the well studied second-order transition fromD 4 4 symmetry toD 2 4 symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system.  相似文献   

15.
Abstract

α-Quartz was compressed at room temperature in a diamond-anvil cell without a medium to maximum pressures of 31 to 213 GPa and was studied by energy-dispersive synchrotron X-ray diffraction. Broad peaks observed in a previous high-pressure diffraction study of silica glass are evident in the present study of quartz compression, providing in situ confirmation of pressure-induced amorphization above 21 GPa. The 21-GPa crystalline-crystalline (quartz 1–11) transformation previously observed on quasihydrostatic compression of quartz is found to also occur under the current nonhydrostatic conditions, at the identical pressure. With nonhydrostatic compression, however, new sharp diffraction lines are observed at this pressure. The measurements show the coexistence of at least one amorphous and two crystalline phases above 21 GPa and below 43 GPa. The two crystalline phases are identified as quartz II and a new, high-pressure silica phase. The high-pressure phases, both crystalline and amorphous, can be quenched to ambient conditions from a maximum pressure of 43 GPa. With compression above 43 GPa, the diffraction pattern from quartz II is lost and the second crystalline phase persists to above 200 GPa.  相似文献   

16.
Abstract

This paper reports the results of a synchrotron X-ray diffraction study on the crystal structures of Bi 111 and Bi 111′ which have been known to form under high pressure but have, for a long time, been unsolved. Powdered samples were compressed in a cubic-type multi-anvil press, MAXID, and diffraction data were collected using an Imaging Plate with monochromatized radiation of an energy of 49.7 keV. It was possible to identify at 3.8 GPa forty-eight reflections for Bi I11 in the sin θ / δ range from 1.6 nm?1 to 5.6 nm?1, which were indexed in terms of a tetragonal unit cell with a=0.8659 nm and c═ O·4238 nm (2=10). Analysis based on the observed intensities of the reflections led to a structure in which atoms form a distorted body-centered cubic lattice. It is of the same type as the structure of the high pressure phase of antimony Sb 11. When pressure was increased across the suggested transition pressure 4.3 GPa between Bi III and Bi III′ to 6.6 GPa, no change in the diffraction pattern was observed, indicating that there is no distinction between the two phases as long as the crystal structure is concerned. Discussion is given on the sequence of high pressure phase transitions in the Group Vb elements.  相似文献   

17.
Abstract

The emission spectra for LaOBr : Eu were measured at pressures up to 13 GPa and room temperature. The pressure dependences of levels of 7F0,1,2,3,4 and 5D0,1,2 are given. The crystal field parameters Bk q were computed by fitting the experimental levels. The strength of crystal field decreases with increasing pressure. A brief discussion on the observed phenomena is presented.  相似文献   

18.
Photoluminescence and Raman spectra of rare earth complex Nd(DBM)3·Phen (DBM, dibenzoylmethane; Phen, 1,10-phenanthroline) are measured at high pressures. A new Raman band appearing at 1070 cm−1 indicates a second-order phase transition around 5.0 GPa. Although the crystal lattice is destroyed for pressures higher than 7.1 GPa, photoluminescence spectra show that the emission intensity of Nd3+ is enhanced dramatically with the pressure increasing up to 9.9 GPa, which is attributed to an efficient intramolecular energy transfer from the ligand to Nd3+. By analyzing the energy of the ground and excited states at 9.9 GPa, the 4H11/2 energy level is considered as the main resonance energy level that efficiently accepts the transferred energy from the ligand.  相似文献   

19.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

20.
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号