首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spin-spin interactions in a system that contains three different spin carriers, [{LCu}Gd(H2O)3×{Fe(CN)6}] n ·4nH2O (1) [L2−, N,N-propylenedi(3-methoxysalicylideneiminato)], were investigated by electron paramagnetic resonance spectroscopy. Additional information was obtained by analyzing the discrete heterobinuclear system [LCu(OH2)Gd(O2NO)3] (2), which contains the Cu(II)-Gd(III) pair also existing in the structure of 1, and the compounds [{LCu}Gd(H2O)3{Co(CN)6}] n ·3.5nH2O and [{LCu}La(H2O)3×{Fe(CN)6}] n ·4nH2O, which are isostructural with 1 and in which the paramagnetic low-spin Fe(III) and Gd(III) ions were replaced by diamagnetic low-spin Co(III) and La(III), respectively. The investigations were carried out in the temperature range of 293–4 K in both X- and Q-bands and also using a dual-mode X-band. The experimental spectra of the Cu(II)-Gd(III) pairs in 2 were interpreted as the sum of spectra of the ground spin state with total S = 4 and the excited state with S = 3 appearing due to the ferromagnetic exchange interaction between Cu(II) and Gd(III) ions. By fitting the experimental and simulated spectra, the zero-field splitting parameters of the Gd(III) ion are estimated and it is shown that no influence of the anisotropic interaction is detected. The magnetic properties of 1 are discussed from the perspective of the interaction of the Cu(II)-Gd(III) binuclear fragments with the Fe(III) ions.  相似文献   

2.
3.
The thermochemistry of organometallic complexes in solution and in the gas phase has been an area of increasing research interest. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of meta‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Minnesota 2006 functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The polar effects of the meta substituents show that the dominant role to the magnitudes of ΔΔHhomo(Fe–O)'s or ΔΔHhomo(Fe–S)'s. σα·, σc· values for meta substituents are all related to polar effects. Spin‐delocalization effects of the meta substituents in ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are small but not necessarily zero. Molecular effects rather than ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are more suitable indexes for the overall substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The meta substituent effects of meta‐electron‐withdrawing groups on the Fe–S bonds are much stronger than those on the Fe–O bonds. For meta‐electron‐donating groups, the meta substituent effects have the comparable magnitudes between series 1 and 2 . ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A new type III of 3,5-lutidine spin crossover coordination compound with formula Fe(3,5-lutidine)2Ni(CN)4·2[(H2O)(3,5-lutidine)] 2c has been obtained. The ratio of the high spin state (HS) iron (II) changing to the low spin state (LS) iron (II) in 2c is higher than that of type I and type II 3,5-lutidine coordination polymer 2a and 2b previously reported. 57Fe Mössbauer spectra of 2c show two different doublets which correspond to HS1 (inner doublet lines) and HS2 (outer doublet lines). The intensity of the HS1 doublet decreases on cooling to 80 K while the intensity of another component, the LS singlet, increases. The 90 % of the HS1 doublet change to the LS singlet is probably due to suitable environments of octahedral iron (II) ions coordinated by four nitrogen atoms of cyano groups and two nitrogen atoms of 3,5-lutidine ligands. We also prepared the Hofmann-like 3,5-dichloropyridine coordination compound Fe(3,5-dichloropyridine)2Ni(CN)4 ·2[(3,5-dichloropyridine)(H2O)] 2d to compare it with 2c. 57Fe Mössbauer spectra of 2d show that 2d is not a spin crossover coordination compound.  相似文献   

5.
Metal–ligand bond enthalpy data can afford invaluable insights into important reaction patterns in organometallic chemistry and catalysis. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of para‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4OFp ( 1 )] and (para‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory (DFT) methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that DFT methods can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The remote substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s [ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s] can also be satisfactorily predicted. The good correlations [r = 0.98 (g, 1), 0.98 (g, 2)] of ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s in series 1 and 2 with the substituent σp+ constants imply that the para‐substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The knowledge of accurate bond strengths is a fundamental basis for a proper analysis of chemical reaction mechanisms. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–O and Fe–S bond energies of para‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4O(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4OFp ( 1 ), where G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2] and para‐substituted benzenethiolatodicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4S(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4SFp ( 2 )] complexes. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe–O)'s and ΔHhet(Fe–S)'s. The excellent linear free‐energy relations [r = 0.99 (g, 1a), 1.00 (g, 2b)] among the ΔΔHhet (Fe–O)'s and Δpka's of O–H bonds of p‐G‐C6H4OH or ΔΔHhet(Fe‐S)'s and Δpka's of S–H bonds of p‐G‐C6H4SH imply that the governing structural factors for these bond scissions are similar. And the linear correlations [r = ?0.99 (g, 1g), ?0.98 (g, 2h)] among the ΔΔHhet (Fe‐O)'s or ΔΔHhet(Fe‐S)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free‐energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–O)'s or ΔHhet(Fe–S)'s. ΔΔHhet(Fe–O)'s(g) ( 1 ) and ΔΔHhet(Fe–S)'s(g)( 2 ) follow the Capto‐dative principle. The substituent effects on the Fe–O bonds are much stronger than those on the less polar Fe–S bonds. Insight from this work may help the design of more effective catalytic processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The knowledge of accurate bond strengths is a fundamental basis for a proper analysis of chemical reaction mechanisms. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–O and Fe–S bond energies of (meta‐substituted phenoxy)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] complexes. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhet(Fe–O)'s and ΔHhet(Fe–S)'s. The excellent linear free energy relations [r = 1.00 (g, 1e), 1.00 (g, 2b)] among the ΔΔHhet (Fe–O)'s and δΔG0 of O?H bonds of m‐G‐C6H4OH or ΔΔHhet(Fe–S)'s and ΔpKa's of S?H bonds of m‐G‐C6H4SH imply that the governing structural factors for these bond scissions are similar. And, the linear correlations [r = ?0.97 (g, 1 g), ?0.97 (g, 2 h)] among the ΔΔHhet (Fe–O)'s or ΔΔHhet(Fe–S)'s and the substituent σm constants show that these correlations are in accordance with Hammett linear free energy relationships. The inductive effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–O)'s or ΔHhet(Fe–S)'s. The ΔΔHhet(Fe–O)'s(g) (1) and ΔΔHhet(Fe–S)'s(g)(2) follow the capto‐dative Principle. The substituent effects on the Fe–O bonds are much stronger than those on the less polar Fe–S bonds. Insight from this work may help the design of more effective catalytic processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The pressure dependences of the peaks observed in the micro‐Raman spectra of Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O) have been measured up to 5.0 GPa. The vibrational modes of Prussian blue appearing at 201 and 365 cm−1 show negative dν/dP values and Grüneisen parameters and are assigned to the transverse bending modes of the Fe C N Fe linkage which can contribute to a negative thermal expansion behavior. A phase transition occurring between 2.0 and 2.8 GPa in potassium ferricyanide is shown by changes in the spectral region 150–700 cm−1. In the spectra of the nitroprusside ion, there are strong interactions between the FeN stretching mode and the FeNO bending and the axial CN stretching modes. The pressure dependence of the NO stretching vibration is positive, 5.6 cm−1 GPa−1, in contrast to the negative behavior in the iron(II)‐meso‐tetraphenyl porphyrinate complex. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A ligand with double sulfinyl groups, naphthyl-naphthalinesulphonylpropyl sulfoxide(dinaphthyl disulfoxide, L), was synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DTA, 1HNMR and UV spectra. The composition of these complexes, were RE2(ClO4)6·(L)5·nH2O (RE = La, Nd, Eu, Tb, Yb, n = 2 ∼ 6, L = C10H7SOC3H6SOC10H7). The fluorescent spectra illustrated that the Eu (III) complex had an excellent luminescence. It was supposed that the ligand was benefited for transferring the energy from ligand to the excitation state energy level (5D0) of Eu (III). The Tb (III) complex displayed weak luminescence, which attributed to low energy transferring efficiency between the average triplet state energy level of ligand and the excited state (5D4) of Tb (III). So the Eu (III) complex displayed a good antenna effect for luminescence. The phosphorescence spectra and the relationship between fluorescence lifetime and fluorescence intensity were also discussed.  相似文献   

10.
The present work cites the investigation results of local magnetic fields on 1H and 19F nuclei and spin ordering in β-FeF3·3H2O. In the structure of this compound (space group P42/n, a=7.846 Å, c=7.754 Å, z=41,2) Fe atoms are bonded via bridged F atoms (1) in infinite chains along the /001/ axis. With such positioning, in which two paramagnetic atoms are separated by a diamagnetic atom (F, O, C1 and others) there is a possibility for indirect (superexchange) interaction. Linear chains … Fe - F - Fe - F - Fe - F … are separated from each other by F(2) atoms and water molecules H2O (1) and H2O (2), so that exchange between neighboring Fe atoms from various chains is ostensibly much encumbered.  相似文献   

11.
12.
In the present work uranyl-acetonitrile complex formation is studied on the basis of analysis of vibrational (IR absorption and Raman) spectra of UO2(NO3)2·6H2O and UO2(ClO4)2·7H2O. From the present results and coordination critera for nitrate groups and acetonitrile, it is concluded that in the UO2 (NO3)2·6H2O-acetonitrile system, acetonitrile molecules are in the second coordination sphere of the uranyl ion. In a benzene solution of uranylperchlorate with added acetonitrile, acetonitryl is substituted for a water molecule in the first coordination sphere of the uranyl ion. In the coordination the vibration frequency of C≡H of acetonitrile (2240 cm−1) is shifted by 21 cm−1 to the shortwave region. Possible reasons for the relatively small change in this frequency are discussed. Belarusian State University, 4, F. Skorina Ave., Minsk, 220050, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 3, pp. 179–183, March–April, 1997.  相似文献   

13.
Raman and infrared (IR) spectra of defect pyrochlores TaWO5.5, NH4SbWO6·H2O, HSbWO6·H2O, LiSbWO6·H2O, NaSbWO6·H2O, KSbWO6, RbSbWO6, CsSbWO6, and TlSbWO6 were measured. The obtained spectra are discussed using the factor group approach for the cubic Fd‐3m space group, and assignment of bands to respective motions of atoms is proposed. Our results show that the phonon properties of the pyrochlores are strongly affected by disorder, and therefore Raman and IR spectroscopies are very useful tools in studying disorder in this family of compounds. In particular, our studies have shown that in these ionic conductors disorder at sites occupied by NH , H+, or alkali‐metal ions decreases with increasing size and mass of these ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Mixed-valence trinuclear iron propionates [Fe 2 III FeIIO(C2H5CO2)6(py)3]npy, wheren=0, 1.5, were synthesized and the structure of the pyridine-solvated complex was determined by single-crystal X-ray diffraction. Mössbauer spectra of the solvated propionate complex showed a temperature-dependent mixed-valence state related to phase transitions, reaching an almost delocalized valence state at room temperature. On the other hand, the non-solvated propionate showed a remarkable change of the spectral shape related to a phase transition, remaining in a localized valence state at higher temperatures up to room temperature.  相似文献   

15.
Previous investigations have shown that it is difficult to acquire the infrared (IR) spectra of M+(H2O) (M?=?Cu, Au) using a single IR photon by attaching an Ar atom to M+(H2O). To explore whether the IR spectra can be obtained using the two Ar atoms tagging method, the geometrical structures, IR spectra and interaction energies are investigated in detail by ab initio electronic structure calculations for M+(H2O)Ar2 (M?=?Cu, Au) complexes. Two conceivable isomeric structures are found, which result from different binding sites for two Ar atoms. CCSD(T) calculations predict that two Ar atoms are most likely to attach to Cu+ for the Cu+(H2O)Ar2 complex, while the Au+(H2O)Ar2 complex prefers the isomer in which one Ar atom attaches to an H atom of the H2O molecule and the other one is bound to Au+. Moreover, the calculated binding energies of the second Ar atom are smaller than the IR photon energy, and so it is possible to obtain the IR spectra for both Cu and Au species. The changes in the spectra caused by the attachment of Ar atoms to M+(H2O) are discussed.  相似文献   

16.
The interaction of iron (III) with pipemidic acid, Hpipem, afforded the complex [Fe (pipem) (HO)2 (H2O)]2. The new complex has been characterised by elemental analyses, infra-red, EPR and XPS spectroscopies. The monoanion, pipem, exhibits O, O ligation through the carbonyl and carboxylato oxygen atoms. Six coordinate dimer distorted octahedral configuration has been proposed for [Fe (pipem) (HO)2 (H2O)]2.  相似文献   

17.
The new HTB (Hexagonal Tungsten Bronze) phases of FeF3 and (H2O)0.33 FeF3 have been characterized by 57Fe Mössbauer spectroscopy; they have saturation hyperfine fields of (577 ±3) and (560±3) kOe and magnetic ordering temperatures (97±2) and (128.7 ± 0.5) K, respectively. The magnetic ordering temperature and the electric hyperfine interactions on iron are sensitive to the presence of zeolitic water in the system. Hydrolysed samples have also been investigated.  相似文献   

18.
The iron phosphonates, tris (methyl methylphosphonate) iron (III) [Fe(MMP)3]; tris (ethylphosphonate) iron (III) [Fe(EEP)3]; and tris (isopropyl methylphosphonate) iron (III) [Fe(EEP)3]; have been obtained and studied previously by infrared spectroscopy and elemental analysis.1 The infrared obsorption spectra of the iron phosphonate compounds exhibited bands which could be assigned to functional groups of the phosphonate ligand; however, the role played by the iron atom in the molecule was unknown. In the present article, the results of Mössbauereffect spectroscopy are used to provide evidence for the interaction of the iron with the phosphonate esters.  相似文献   

19.
Electronic spectra of hexaamminecobalt(III) complex cation in aqueous solution were analyzed to obtain spectral components. Subsequently, based on the spectral components, the coordination geometry around the cobalt(III) ion was investigated, using the reverse angular overlap model method. The result indicates that the geometry is a trigonally compressed octahedron with the polar angle of 57.9?±?1.0° under D3d symmetry, where the polar angle is the angle between the trigonal axis and the Co–N bond. From this angle, the top and side N–Co–N bond angles are calculated as 94.4° and 85.6°, respectively. The density functional theory computation supported this trigonally compressed structure in aqueous solution.  相似文献   

20.
韩薇  常树全  戴耀东  陈达  黄彦君 《物理学报》2008,57(4):2493-2499
用溶液共沉淀法合成了普鲁士蓝类分子磁体化合物Ni3[Fe(CN)62·8.2H2O,使用透射电子显微镜、元素分析仪、X射线荧光光谱仪、X射线衍射仪、傅里叶变换红外光谱仪、超导量子干涉仪对配合物的结构及磁性能进行了分析研究.结果表明:产物为颗粒状,粒径为20—30 nm,晶体结构为面心立方;当温度从60 K降至5 K时,配合物表现为从顺磁相到铁磁相的转变,相变温度为22.8 K,分析得出Ni(Ⅱ)和Fe(Ⅲ)之间通过氰 关键词: 普鲁士蓝 磁性 穆斯堡尔谱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号