首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set X of vertices of G is an independent dominating set if no two vertices of X are adjacent and each vertex not in X is adjacent to at least one vertex in X. Independent dominating sets of G are cliques of the complement G of G and conversely.This work is concerned with the existence of disjoint independent dominating sets in a graph G. A new parameter, the maximum number of disjoint independent dominating sets in G, is studied and the class of graphs whose vertex sets partition into independent dominating sets is investigated.  相似文献   

2.
A vertex x in a subset X of vertices of an undirected graph is redundant if its closed neighbourhood is contained in the union of closed neighbourhoods of vertices of X?{x}. In the context of a communications network, this means that any vertex which may receive communications from X may also be informed from X?{x}. The lower and upper irredundance numbers ir(G) and IR(G) are respectively the minimum and maximum cardinalities taken over all maximal sets of vertices having no redundancies. The domination number γ(G) and upper domination number Γ(G) are respectively the minimum and maximum cardinalities taken over all minimal dominating sets of G. The independent domination number i(G) and the independence number β(G) are respectively the minimum and maximum cardinalities taken over all maximal independent sets of vertices of G.A variety of inequalities involving these quantities are established and sufficient conditions for the equality of the three upper parameters are given. In particular a conjecture of Hoyler and Cockayne [9], namely i+β?2p + 2δ - 22pδ, is proved.  相似文献   

3.
A graceful labeling of a graph G with q edges is an injective assignment of labels from {0, 1, . . . , q} to the vertices of G so that when each edge is assigned the absolute value of the difference of the vertex labels it connects, the resulting edge labels are distinct. A labeling of the first kind for coronas ${C_n \odot K_1}$ occurs when vertex labels 0 and q = 2n are assigned to adjacent vertices of the n-gon. A labeling of the second kind occurs when q = 2n is assigned to a pendant vertex. Previous research has shown that all coronas ${C_n \odot K_1}$ have a graceful labeling of the second kind. In this paper we show that all coronas ${C_n \odot K_1}$ with ${n \equiv 3, 4\, {\rm (mod\, 8)}}$ also have a graceful labeling of the first kind.  相似文献   

4.
《Discrete Mathematics》2002,231(1-3):311-318
An L(2,1)-labeling of graph G is an integer labeling of the vertices in V(G) such that adjacent vertices receive labels which differ by at least two, and vertices which are distance two apart receive labels which differ by at least one. The λ-number of G is the minimum span taken over all L(2,1)-labelings of G. In this paper, we consider the λ-numbers of generalized Petersen graphs. By introducing the notion of a matched sum of graphs, we show that the λ-number of every generalized Petersen graph is bounded from above by 9. We then show that this bound can be improved to 8 for all generalized Petersen graphs with vertex order >12, and, with the exception of the Petersen graph itself, improved to 7 otherwise.  相似文献   

5.
A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study graphs whose vertex set can be partitioned into two total dominating sets. In particular, we develop several sufficient conditions for a graph to have a vertex partition into two total dominating sets. We also show that with the exception of the cycle on five vertices, every selfcomplementary graph with minimum degree at least two has such a partition.  相似文献   

6.
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. In this paper, we consider questions about independent domination in regular graphs.  相似文献   

7.
The k-Dominating Graph   总被引:1,自引:0,他引:1  
Given a graph G, the k-dominating graph of G, D k (G), is defined to be the graph whose vertices correspond to the dominating sets of G that have cardinality at most k. Two vertices in D k (G) are adjacent if and only if the corresponding dominating sets of G differ by either adding or deleting a single vertex. The graph D k (G) aids in studying the reconfiguration problem for dominating sets. In particular, one dominating set can be reconfigured to another by a sequence of single vertex additions and deletions, such that the intermediate set of vertices at each step is a dominating set if and only if they are in the same connected component of D k (G). In this paper we give conditions that ensure D k (G) is connected.  相似文献   

8.
9.
A connected graph G can be disconnected or reduced to a single vertex by removing an appropriate subset of the vertex set V(G), and can be disconnected by removing a suitable subset of the edge set E(G). Attention has usually been centered on separating sets having minimum cardinality, and parameters called the vertex connectivity and the edge connectivity defined. These classical concepts are generalized by using separating sets which are minimal. By considering the maximum as well as the minimum cardinality of such sets, one defines vertex and edge connectivity parameters. Sharp upper bounds are established for these numbers and their values computed for certain classes of graphs. An analogue of Whitney's theorem on connectivity is obtained. Parameters are also defined for minimal separating sets consisting of a mixture of vertices and edges, and these are shown to depend on the maximum and minimum values of the vertex and edge connectivity parameters.  相似文献   

10.
A vertex η in a subset X of vertices of an undirected graph is redundant if its closed neighborhood is contained in the union of closed neighborhoods of vertices of X-{η}. In the context of a communications network, this means that any vertex that may receive communications from X may also be informed from X-{η}. The irredundance number ir(G) is the minimum cardinality taken over all maximal sets of vertices having no redundancies. In this note we show that ir(G) ? n/(2Δ-1) for a graph G having n vertices and maximum degree Δ.  相似文献   

11.
We consider a graph G with 2κ vertices of degree 5 and κ vertices of degree 2, all other vertices being of degree 4. In connection with the timetable optimization problem, we study necessary and sufficient conditions for the existence of a factorization of G into two skeleton subgraphs whose edge sets are disjoint and have the same cardinality and, for each vertex of the graph, the numbers of edges incident to this vertex in these subgraphs differ at most by unity.  相似文献   

12.
《Discrete Mathematics》2022,345(5):112806
A sum graph is a finite simple graph whose vertex set is labeled with distinct positive integers such that two vertices are adjacent if and only if the sum of their labels is itself another label. The spum of a graph G is the minimum difference between the largest and smallest labels in a sum graph consisting of G and the minimum number of additional isolated vertices necessary so that a sum graph labeling exists. We investigate the spum of various families of graphs, namely cycles, paths, and matchings. We introduce the sum-diameter, a modification of the definition of spum that omits the requirement that the number of additional isolated vertices in the sum graph is minimal, which we believe is a more natural quantity to study. We then provide asymptotically tight general bounds on both sides for the sum-diameter, and study its behavior under numerous binary graph operations as well as vertex and edge operations. Finally, we generalize the sum-diameter to hypergraphs.  相似文献   

13.
A coloring of the vertices of a graph G is convex if, for each assigned color d, the vertices with color d induce a connected subgraph of G. We address the convex recoloring problem, defined as follows. Given a graph G and a coloring of its vertices, recolor a minimum number of vertices of G, so that the resulting coloring is convex. This problem is known to be NP-hard even when G is a path. We show an integer programming formulation for the weighted version of this problem on arbitrary graphs, and then specialize it for trees. We study the facial structure of the polytope defined as the convex hull of the integer points satisfying the restrictions of the proposed ILP formulation, present several classes of facet-defining inequalities and discuss separation algorithms.  相似文献   

14.
Let G=(V,E) be a plane triangulated graph where each vertex is assigned a positive weight. A rectilinear dual of G is a partition of a rectangle into |V| simple rectilinear regions, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge in E. A rectilinear dual is called a cartogram if the area of each region is equal to the weight of the corresponding vertex. We show that every vertex-weighted plane triangulated graph G admits a cartogram of constant complexity, that is, a cartogram where the number of vertices of each region is constant. Furthermore, such a rectilinear cartogram can be constructed in O(nlogn) time where n=|V|.  相似文献   

15.
A graph is said to be k-variegated if its vertex set can be partitioned into k equal parts such that each vertex is adjacent to exactly one vertex from every other part not containing it. We prove that a graph G on 2n vertices is 2-variegated if and only if there exists a set S of n independent edges in G such that no cycle in G contains an odd number of edges from S. We also characterize 3-variegated graphs.  相似文献   

16.
Let G be a directed graph whose edges are coloured with two colours. Call a set S of vertices of Gindependent if no two vertices of S are connected by a monochromatic directed path. We prove that if G contains no monochromatic infinite outward path, then there is an independent set S of vertices of G such that, for every vertex x not in S, there is a monochromatic directed path from x to a vertex of S. In the event that G is infinite, the proof uses Zorn's lemma. The last part of the paper is concerned with the case when G is a tournament.  相似文献   

17.
18.
Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, . . . , p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f (x) assigned to the vertex x together with all values f (xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, . . . , r + 1.  相似文献   

19.
Locating and total dominating sets in trees   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G=(V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.  相似文献   

20.
In this article we begin the study of the vertex subsets of a graph G which consist of the vertices contained in all, or in no, respectively, minimum dominating sets of G. We characterize these sets for trees, and also obtain results on the vertices contained in all minimum independent dominating sets of trees. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 163‐177, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号