首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《高分子学报》2017,(2):321-328
分别制备了以支化小分子量聚乙烯亚胺(PEI-1.8k)为引发剂,引发苯丙氨酸-NCA开环聚合得到聚乙烯亚胺-聚苯丙氨酸(PEI1.8k-g-PPhe)以及聚乙烯亚胺接枝苯丙氨酸单体(PEI1.8k-g-Phe)的系列基因载体材料.利用核磁、粒度、zeta电位仪、荧光光度计、流式细胞仪以及激光共聚焦显微镜对PEI1.8k-g-PPhe,PEI1.8k-g-Phe以及PEI1.8k-g-PPhe/DNA和PEI1.8k-g-Phe/DNA复合物颗粒进行了系统的表征.研究结果表明,最佳转染条件下,PEI1.8k-g-PPhe10/DNA复合物颗粒的粒径约为150 nm,表面电位约为16 m V.在人源宫颈癌(He La)和人源乳腺癌(MCF-7)2种细胞系中均具有较高的基因转染效率,且最佳转染效率可达到PEI-25k的12倍.MTT细胞毒性实验分别比较了PEI1.8k-g-PPhe和PEI1.8k-g-Phe对He La细胞毒性的大小.从实验结果可见,苯丙氨酸引入的方式及数量决定着其细胞毒性的大小.PEI1.8k-g-PPhe和PEI1.8k-g-Phe都具有较低的细胞毒性(材料在较高浓度1 mg/m L时的细胞存活率大于70%).内吞实验结果表明,PEI1.8k-g-PPhe由于接入了具有规则聚合链的聚苯丙氨酸,而易于被He La细胞内吞.PEI1.8k-g-PPhe10/DNA复合物颗粒相比于PEI-25k/DNA,PEI-1.8k/DNA和PEI1.8k-g-PPhe/DNA具有更高的细胞内吞效率.  相似文献   

2.
通过高压静电纺丝技术制备了聚乙烯醇/聚乙烯亚胺(PVA/PEI)纳米纤维膜, 对纤维膜进行功能化使其转化为对重金属离子具有高络合能力的聚乙烯醇/二硫代氨基甲酸盐功能化聚乙烯亚胺(PVA/DTC)纳米纤维膜. 研究了PVA/PEI纳米纤维膜的交联和功能化以及PVA/DTC纤维膜对铅离子的吸附行为. 结果表明, 高压静电纺丝法可制备出纤维直径分布均匀、 形貌良好的纳米纤维膜, 且交联、 功能化后仍能保持蓬松纳米纤维状的网状结构. PVA/DTC纳米纤维膜对铅离子吸附速率快, 吸附量容量高, 且具有良好的再生吸附能力, 是一种潜在的重金属离子高效吸附材料.  相似文献   

3.
采用1-乙基-(3-二甲基氨基丙基)碳酰二亚胺交联技术对具有抗凝血抗菌作用的肝素/壳聚糖多层膜进行交联, 研究了交联结构对多层膜稳定性和血管内皮细胞亲和性的影响. QCM-D结果显示, 交联可有效地提高多层膜的稳定性, 在模拟人体血液流速(3.0 cm/s)下保持良好的稳定. 体外内皮细胞的研究结果显示, 多层膜的交联可有效地调节肝素/壳聚糖多层膜表面粘弹性, 并显著增加内皮细胞的粘附与生长. 交联的肝素/壳聚糖多层膜有望成为理想的心血管功能界面涂层材料.  相似文献   

4.
以聚丙烯酸(PAA)和聚乙烯亚胺(PEI)为构筑单元,运用层层自组装技术制备了聚电解质多层膜.该多层膜具有独特的动态特点——经酸处理后膜内部形成海绵状通孔结构,该海绵结构在饱和水蒸气的处理下,多孔结构能够闭合,重新回到致密的膜结构.借助该种动态多层膜平台,能够简单有效地通过毛细作用力将溶菌酶负载并固定于多层膜中,为制备基于抗菌蛋白的抗菌涂层提供了新的方法.扫描电镜表征了多层膜动态变化过程,激光共聚焦显微镜表征了溶菌酶在膜内的分布情况,并测定了溶菌酶载入量及其释放动力学.进一步的抗菌测试表明该种抗菌涂层在溶菌酶和PEI的共同作用下可以有效地抑制金黄色葡萄球菌.将多层膜同时负载溶菌酶和乳铁蛋白,提升了涂层对大肠杆菌的杀菌效果.  相似文献   

5.
结合大分子自组装和原位自由基聚合方法,采用油溶性引发剂偶氮二异丁腈(AIBN),在聚(ε-已内酯)(PCL)纳米粒子表面引发聚合单体N-异丙基丙烯酰胺(NIPAM)和交联剂亚甲基双(丙烯酰胺)(MBA),制备得到了核-壳结构的PCL/PNIPAM聚合物纳米微球.系统研究了单体和交联剂用量、壳层目标交联度、初始PCL/DMF溶液的浓度及引发剂AIBN含量4个反应参数对核-壳结构PCL/PNIPAM纳米微球的PNIPAM壳层得率、微球尺寸、温敏性能及电镜形貌的影响.结果表明,在制备核-壳结构PCL/PNIPAM纳米微球的反应过程中,PCL粒子表面的聚合和水中的聚合二者之间相互竞争.适当增加引发剂AIBN的添加量,有利于制备得到核/壳比例可控的PCL/PNIPAM纳米微球;交联剂MBA较高的反应活性导致形成了非均匀交联的PNIPAM壳层.  相似文献   

6.
将交联酶聚集体(CLEAs)与仿生硅化技术相结合,制备了交联脂肪酶Candidasp.99-125杂化生物催化剂.以京尼平为交联剂,在最佳条件下制得的脂肪酶CLEAs的酶活达771U/g,回收率达75%;保护剂聚乙烯亚胺(PEI)与Candidasp.99-125脂肪酶共沉淀制备P/CLEAs,其酶活达897U/g,回收率约88%;利用PEI的诱导作用,在P/CLEAs表面形成氧化硅涂层,制得的脂肪酶CLEAs(Coated-CLEAs)显示出良好的稳定性,特别是其抗蛋白酶水解能力、有机溶剂耐受能力、重复使用性能等方面明显提高.  相似文献   

7.
采用超分子组装技术,通过巯基化透明质酸(HA-SH)与聚乙烯亚胺(PEI)/DNA缔合体的界面静电组装,构建了壳层二硫键仿生交联的基因超分子组装体(PEI/DNA/HA-SH).凝胶电泳结果表明,该组装体有很好的DNA缔合特性.壳层的仿生交联使基因超分子组装体在生理盐溶液中的稳定性得到有效改善,细胞毒性显著降低,并能有效转染细胞,为非病毒基因传递体系的设计提供了新途径.  相似文献   

8.
为提高金属酞菁膜的三阶非线性光学性质,采用静电自组装技术制备出了包含阴离子四磺化酞菁氧钒(VOTsPc)和阳离子聚乙烯亚胺(PEI)交替层的复合薄膜.通过紫外-可见光谱仪表征了VOTsPc/PEI交替多层组装体的组装过程,结果表明组装过程为有规律的连续吸收过程.利用原子力显微镜技术研究了VOTsPc/PEI薄膜的表面形貌,结果表明膜表面是光滑的、均匀的;膜表面紧密堆积了纳米级颗粒,平均粒径为75 nm,平均表面粗糙度为4.406 nm.使用调Q倍频ns/ps Nd∶YAG脉冲激光系统,在输出激光波长为532 nm,脉冲宽度为4 ns条件下,通过Z-扫描测试研究了组装膜的三阶非线性光学性质.通过对实验数据的模拟和计算,30-双层VOTsPc/PEI膜的非线性极化率n2和非线性吸收系数β值分别为4.87×10-6esu和1.2×10-5m/W,三阶非线性极化率χ(3)值为1.57×10-6esu.VOTsPc/PEI膜显示出较强的非线性反饱和吸收性能,具有广阔的应用前景.  相似文献   

9.
以聚乙烯亚胺(PEI)为大分子引发剂,辛酸亚锡为催化剂,引发对二氧环己酮(PDO)单体开环聚合,通过graft from法制备了聚乙烯亚胺接枝聚对二氧环己酮接枝共聚物(PEI-g-PPDO).通过FTIR、1H-NMR、1H-13C-HMQC等对共聚物的分子结构进行了表征.共聚产物的接枝链长度、亲疏水链段含量等可以通过反应物中单体的含量进行有效调控;用DSC对共聚物的热性能和结晶性能研究表明,接枝链段长度越大、PPDO链段含量越高,共聚物的结晶性能也越好.采用芘探针法初步研究了共聚物在水中的胶束化行为,PEI-g-PPDO接枝共聚物在水中可以形成较稳定的聚集体.  相似文献   

10.
《高分子通报》2021,(6):114-121
分别以Ziegler-Natta催化剂和茂金属催化剂(rac-Et(Ind)_2ZrCl_2)引发乙烯/6-呋喃-1-己烯(FH)共聚合,合成了侧基含有呋喃取代基的聚乙烯。再以1,6-二马来酰亚胺基己烷(BMH)为交联剂,通过Diels-Alder反应制备了交联聚乙烯。利用~1H-NMR、DSC等对乙烯/FH共聚物结构进行了表征,利用FTIR、拉伸测试、蠕变实验等对交联聚乙烯的结构与性能进行测定。结果表明,通过改变马来酰亚胺与呋喃的比例可以调节聚乙烯的交联程度,同时Diels-Alder反应的热可逆性赋予交联聚乙烯重复加工性。  相似文献   

11.
Layer-by-layer multilayered film has been creating great opportunities in developing controlled drug and other bioactive molecular delivery system. In this work, coumarin bearing micelles of poly(acrylic acid-coumarin methacrylate) is first synthesized in a one-step copolymerization and the reversible photo-crosslinkable multilayers containing coumarin groups are then fabricated via layering the micelles with polyethyleneimine (PEI). The film growth behavior of polyetheleneimine/poly(acrylic acid-coumarin methacrylate) (PEI/P(AA-r-CMA)) multilayer is found to rely on deposit solution pH. Increasing PEI solution pH and decreasing P(AA-r-CMA) pH can greatly accelerate film growing process. This is explained by PEI diffusivity and destabilization of P(AA-r-CMA) micelle at solution/multilayer interface. Nile red (NR) is loaded into the film as a model drug via simple post diffusion driven by hydrophobic interactions. Furthermore, photo-crosslink and decrosslink of PEI/P(AA-r-CMA) film is achieved by irradiating the films with light of 365 and 254 nm wavelength, respectively, which therefore ensures the possibility of fine control over drug delivery procedure.  相似文献   

12.
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on silica and titanium surfaces, with and without an initial layer of polyethyleneimine (PEI), was investigated and characterized by means of in situ ellipsometry and quartz crystal microbalance with dissipation. A two-regime buildup was found in all systems, where the length of the first slow-growing regime is dependent on the structure of the initial layers. In the second fast-growing regime, the film thickness grows linearly while the mass increases more than linearly (close to exponentially) with the number of deposited layers. The film refractive indices as well as the water contents indicate that the film density changes as the multilayer film builds up. The change in film density was proposed to be due to polypeptides diffusing into the multilayer film as they attach. Furthermore, the use of PEI as the initial layer was found to induce a difference in the thickness increments for PGA and PLL.  相似文献   

13.
Here we report fabrication of artificial free-standing yeast biofilms built using sacrificial calcium carbonate-coated templates and layer-by-layer assembly of extracellular matrix-mimicking polyelectrolyte multilayers. The free-standing biofilms are freely floating multilayered films of oppositely charged polyelectrolytes and live cells incorporated in the polyelectrolyte layers. Such biofilms were initially formed on glass substrates of circular and ribbon-like shapes coated with thin layers of calcium carbonate microparticles. The templates were then coated with cationic and anionic polyelectrolytes to produce a supporting multilayered thin film. Then the yeast alone or mixed with various micro- and nanoparticle inclusions was deposited onto the multilayer composite films and further coated with outer polyelectrolyte multilayers. To detach the biofilms from the glass substrates the calcium carbonate layer was chemically dissolved yielding free-standing composite biofilms. These artificial biofilms to a certain degree mimic the primitive multicellular and colonial species. We have demonstrated the added functionality of the free-standing artificial biofilms containing magnetic, latex and silver micro- and nanoparticles. We have also developed "symbiotic" multicellular biofilms containing yeast and bacteria. This approach for fabrication of free-standing artificial biofilms can be potentially helpful in development of artificial colonial microorganisms composed of several different unicellular species and an important tool for growing cell cultures free of supporting substrates.  相似文献   

14.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

15.
利用静电吸附自组装技术将酸化处理后的单壁碳纳米管(SWNTs)与超支化重氮盐(DAS)组装成多层膜.利用紫外光谱、椭偏仪、原子力显微镜、扫描电镜、拉曼光谱等对自组装膜的生长过程、膜厚增长、自组装膜表面形貌以及纳米管在膜中的存在状态等进行了检测,并利用纳米压痕仪测试了自组装膜的硬度和弹性模量.研究结果表明,SWNTs与DAS不仅发生了静电吸附,而且还发生了化学交联.同时碳纳米管均匀分散在自组装膜中.这两种因素的共同作用使得自组装膜表现出良好的纳米力学性能,硬度达到2.0GPa左右,弹性模量达到10.0GPa左右,而且可以从基底上剥离下来成为独立支撑膜.  相似文献   

16.
We present a new way to protect polyelectrolyte multilayers from water, consisting in the adsorption and subsequent fusing of charged wax particles atop a multilayer. The formation of the wax layer is demonstrated by different techniques such as ellipsometry, contact angle measurements, and atomic force microscopy. The diffusion of water in protected and unprotected multilayers is studied by in situ neutron reflectometry. Whereas a top layer of wax crystals already allows substantial reduction of the diffusion, the fusion of this top layer leads to the dominating exclusion of water from the multilayers when dipped in water. This method opens up new interesting avenues for polyelectrolyte multilayers in practical applications where permeability of water, ions, or hydrophilic drugs is an issue.  相似文献   

17.
The growth of polysaccharide multilayers consisting of positively charged chitosan (CH) and negatively charged heparin (HEP) was monitored in situ by employing a quartz crystal microbalance (QCM-D) and dual-polarization interferometry (DPI). The main focus was on how the physicochemical properties of the solution affect the growth and structure of the resulting multilayer film. These results showed that when increasing the ionic strength of the polysaccharide solutions at a fixed pH, both the "dry" (optical) (DPI) mass and wet (QCM) mass of the adsorbed multilayer film increased. The same effect was found when increasing the pH while keeping the ionic strength constant. Furthermore, the growth of multilayers showed an exponential-like behavior independent of the solution conditions that were used in this study. It was also established that chitosan was the predominant species present in the chitosan-heparin multilayer film. We discuss the viscoelastic properties of the adsorbed layers and their variation during the multilayer buildup. Interestingly and contrary to common interpretation of the QCM-D results, we found that under one particular solution condition (pH 4.2 and 30 mM NaCl) the increase in the dissipation of oscillation energy from the adsorbed layer was a consequence of layer stiffening rather than indicating a more hydrated and viscous film. On the basis of the widely used Voigt viscoelastic model for an adsorbed layer, we show that it is the film viscosity and shear that define the layer viscoelasticity (structure) of the film and not the absolute value of energy dissipation, which in fact can be very misleading.  相似文献   

18.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


19.
Application of polyelectrolyte multilayer (PEM) capsules as vehicles for the controlled delivery of substances, such as drugs, genes, pesticides, cosmetics, and foodstuffs, requires a sound understanding of the permeability of the capsules. We report the results of a detailed investigation into probing capsule permeability via a molecular beacon (MB) approach. This method involves preparing MB-functionalized bimodal mesoporous silica (BMSMB) particles, encapsulating the BMSMB particles within the PEM film to be probed, and then incubating the encapsulated BMSMB particles with DNA target sequences of different lengths. Permeation of the DNA targets through the capsule shell causes the immobilized MBs to open due to hybridization of the DNA targets with the complementary loop region of the MBs, resulting in an increase in the MB fluorescence. The assay conditions (BMSMB particle concentration, MB loading within the BMS particles, DNA target concentration, DNA target size, pH, sodium chloride concentration) where the MB-DNA sensing process is effective were first examined. The permeability of DNA through poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) multilayer films, with and without a poly(ethyleneimine) (PEI) precursor layer, was then investigated. The permeation of the DNA targets decreases considerably as the thickness of the PEM film encapsulating the BMSMB particles increases. Furthermore, the presence of a PEI precursor layer gives rise to less permeable PSS/PAH multilayers. The diffusion coefficients calculated for the DNA targets through the PEM capsules range from 10-19 to 10-18 m2 s-1. This investigation demonstrates that the MB approach to measuring permeability is an important new tool for the characterization of PEM capsules and is expected to be applicable for probing the permeability of other systems, such as membranes, liposomes, and emulsions.  相似文献   

20.
We show, in this paper that multivalent ferrocyanide anions can penetrate into exponentially growing (PGA/PAH)n multilayer films whatever the nature of the last deposited layer. These ions are not able to diffuse out of the film when it is brought in contact with a pure buffer solution. However, the contact of this film with a poly(allylamine) (PAH) or a poly(L-glutamic acid) (PGA) solution leads to the release of ferrocyanide ions from the multilayer. It is shown that the release of ferrocyanide anions, when the film is in contact with a PGA solution, is due to the diffusion of the PGA chains into the film so that an exchange between ferrocyanide ions and PGA chains takes place inside the film. On the other hand, PAH chains do not diffuse into PGA/PAH multilayers. When the film is then brought in contact with a PAH solution, the PAH chains from the solution are expected to strongly interact with the ferrocyanide ions and thus induce a diffusion mechanism of the multivalent anions out of the film, the film/solution interface playing the role of a sink for these ions. This work thus shows that interactions between multivalent ions and exponentially growing films are much more complex than expected at first sight and that polyelectrolyte multilayers must be seen as dynamic entities in which diffusion and exchange processes can take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号