首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid–base sol–gel polymerization of sodium silicate in aqueous ammonia solution via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The effects of the volume percentage (%V) of TMCS on the physical and textural properties of the beads were investigated. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density (0.081 g/cm3), high surface area (917 m2/g), and large cumulative pore volume (2.8 cm3/g) was obtained when 10%V TMCS was used. Properties of the final product were examined by FE-SEM, TEM, BET, and TG–DT analyses. Surface chemical modifications were confirmed by FTIR spectroscopy. The hydrophobic silica aerogel beads were thermally stable up to 411 °C. We discuss our results and compare our findings for modified versus unmodified silica beads.  相似文献   

2.
Ambient pressure drying has been carried out for the synthesis of silica–titania aerogel monoliths. The prepared aerogels show densities in the range 0.34–0.38 g/cm3. The surface area and pore volume of these mixed oxide aerogels are comparable to those of the supercritically dried ones. The surface area for 5wt% titania aerogel has been found to be as high as 685 m2/g with a pore volume of 2.34 cm3/g and the 10wt% titania aerogel has a surface area of 620 m2/g with a pore volume of 2.36 cm3/g. Some gels were also made hydrophobic by a surface treatment with methyltrimethoxysilane and trimethylchlorosilane. The surface modified aerogels possess high surface areas in the range of 540–640 m2/g, and are thermally stable in terms of retaining hydrophobicity up to a temperature of 520 °C. The pore size distribution of the aerogels clearly indicates the preservation of the aerogel structure. High Resolution Transmission Electron microscopy has been employed to characterise the aerogels and Fourier Transform infrared spectroscopy to study the effect of titania addition to silica and the surface modification. X-ray diffraction patterns were recorded to verify the molecular homogeneity of the aerogel.  相似文献   

3.
Summary. A new type of silica precursor was synthesized by (trans)alkoxylation of alkoxy- and chlorosilanes with ethyl (L)-lactate. This novel ethyl lactate modified silane was hydrolyzed and condensed in the presence of a non-ionic surfactant – poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer (P123) – to give monolithic silica gels. The wet gels were dried using two different drying techniques resulting in crack-free monoliths: a) supercritical drying with CO2 to yield a porous inorganic material and b) surface silylation with trimethylchlorosilane to yield an inorganic–organic nanocomposite material. The obtained porous gels were characterized by different techniques including thermal analysis, nitrogen sorption, and electron microscopy (TEM, SEM).  相似文献   

4.
Hydrochloric acid (HCl) used as catalyst for the preparation of RF-aerogels leads to organic aerogels in very short gelation times. The gelation time can be varied from a few seconds to minutes. The wet gels can be dried under ambient conditions. By variation of the sol composition or catalyst concentration the microstructure of the dry gels can be modified. The aerogel densities are in the range of 210–410 kg/m3. The particle sizes, determined by scanning electron microscopy (SEM), are in the range of 700–1,500 nm. The particles look essentially spherical and their size spectrum can be close to monodisperse. The specific surface is measured by nitrogen adsorption (BET). Thermogravimetry (TGA) is employed to study the drying process, annealing reactions and decomposition of the aerogel into a carbon aerogel.  相似文献   

5.
The instantaneous solvent exchange/surface modification (ISE/SM) process for the ambient synthesis of crack-free silica aerogel monoliths with a high production yield was optimized. Monolithic forms of silica wet gels were obtained from aqueous colloidal silica sols prepared via the ion exchange of sodium silicate solutions. Crack-free silica aerogel monoliths were synthesized via an ISE/SM process using isopropyl alcohol/trimethylchlorosilane as a modification agent and n-hexane as a main solvent, followed by ambient drying. The optimum process conditions of the ISE/SM process were investigated by clarifying the reaction mechanism and phenomena. Most effective ranges of process variables on the ISE/SM stage were determined as 0.2500-0.3567 of TMCS/H2O (pore water) in molar ratio and 15-30 of n-hexane/TMCS in volumetric ratio, with a reaction temperature below 283 K. Crack-free silica aerogel monoliths synthesized via these conditions had a well-developed mesoporous structure and excellent properties (bulk density of 0.12-0.14 g/cm3, specific surface area of 724 m2/g), and a high yield (nearly 80%).  相似文献   

6.
Flexible aerogel-fiber composites were prepared by silylation and ambient drying of colloidal silica and tetraethylorthosilicate (TEOS)-based sol. After immersing glass fiber matrices into silica sol with colloid-based, colloid/TEOS-based, and TEOS-based silica sol, it was surface-modified in a trimethylchlorosilane/n-hexane solution and heat-treated at 230 °C in ambient atmosphere. Surface silylation of silica aerogel synthesized from colloid and TEOS-based silica sols showed different behaviors. For colloid silica gel, it was comprised of small sized mesopores because colloid-based silica gel has dense networks through great degrees of hydrolysis and condensation. On the contrary, TEOS-based aerogel was consisted of relatively large-sized pores because of comparatively lesser degree of hydrolysis and condensation. Through this study, we can know that the pore structures of silica aerogel could be controlled by choosing colloid or TEOS-based precursor and surface silylation reaction.  相似文献   

7.
Less fragile lightweight nanostructured polyurea based organic aerogels were prepared via a simple sol–gel processing and supercritical drying method. The uniform polyurea wet gels were first prepared at room temperature and atmospheric pressure by reacting different isocyanates with polyamines using a tertiary amine (triethylamine) catalyst. Gelation kinetics, uniformity of wet gel, and properties of aerogel products were significantly affected by both target density (i.e., solid content) and equivalent weight (EW) ratio of the isocyanate resin and polyamine hardener. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet polyurea gels to afford nanoporous aerogels. The thermal conductivity values of polyurea based aerogel were measured at pressures from ambient to 0.075 torr and at temperatures from room temperature to −120 °C under a pressure of 8 torr. The polyurea based aerogel samples demonstrated high porosities, low thermal conductivity values, hydrophobicity properties, relatively high thermal decomposition temperature (~270 °C) and low degassing property and were less dusty than silica aerogels. We found that the low thermal conductivities of polyurea based aerogels were associated with their small pore sizes. These polyurea based aerogels are very promising candidates for cryogenic insulation applications and as a thermal insulation component of spacesuits.  相似文献   

8.
The effect of iron acetylacetonate on the physico-chemical properties of waterglass based silica aerogels by ambient pressure drying has been investigated. Doping the gels with iron acetylacetonat (FeAA) facilitates in the diminution of the density of the aerogels. The well established silica network provides effective confinement of FeAA nanoparticles which resists the collapse of silica network during ambient pressure drying. Therefore, in the present paper, the effects of FeAA on the physico-chemical properties of the aerogels have been studied by varying the FeAA:Na2SiO3 molar ratio from 3 × 10−4 to 6 × 10−4. The aerogels were prepared via ambient pressure drying and characterized by the bulk density, thermal conductivity and water contact angle. The aerogel’s surface morphology, elemental analysis and pore structure were characterized by means of EDAX and FTIR, TEM and N2 adsorption- desorption analyzer. The high temperature hydrophobicity of these aerogels was checked by heating them in temperature controlled furnace. Silica aerogels with low density ~0.050 g/cc have been obtained using the molar ratio of Na2SiO3:H2O:FeAA:Citric acid:TMCS at 1:146.67:3 × 10−4:0.54:9.46, respectively. EDAX and FTIR studies show that the iron species are entrapped in the mesoporous framework and not took part in the bonding with silica.  相似文献   

9.
Ultra fine silica powders were prepared by hydrolysis of SiCl4 using aqueous ammonia solution followed by supercritical drying. Using different methods of combining the SiCl4 and ammonia solution, to vary the initial and final pH of the solution, large silica powders surface areas (271–905 m2/g), fine average particle diameters (3.5–17) nm and low tapping densities (0.02–0.05 g/cm2) could be prepared. Powders with characteristics similar to pyrogenic silica, and with similar thermal stability at temperatures up to 1000°C, could be produced.  相似文献   

10.
Recently-discovered lignocellulosic solvent, 8%(w/w) lithium chloride/dimethyl sulfoxide (LiCl/DMSO), was found to dissolve cellulose of varied crystal forms and degree of polymerization. Cellulose samples could be activated for dissolution by complexation with ethylenediamine (EDA), giving EDA contents of 20–23% (w/w) in the complex irrespective of the cellulose type. The cellulose solution gave well-resolved 13C NMR spectrum, confirming molecular dispersion. Cellulose could be coagulated by ethanol to give translucent cellulose gels, which could be converted to highly porous aerogels via solvent exchange drying. Nitrogen adsorption analysis gave their specific surface areas of 190–213 m2/g, with typical mesopore sizes of 10–60 nm. Scanning electron microscopy revealed the network structure of aerogel composed of relatively straight fibril segments, approx. 20 nm wide and 100–1,000 nm long. X-ray diffraction showed that the material is poorly crystalline cellulose II.  相似文献   

11.
Synthesis of nanoporous silica aerogel by ambient pressure drying   总被引:1,自引:0,他引:1  
A crack-free silica aerogel monolith was fabricated from a cheap water glass derived silicic acid solution by adding glycerol, which served as a drying control chemical additive (DCCA). The OH surfaces of the wet gel with glycerol were modified using a TMCS/n-hexane mixture followed by solvent exchange from water to n-hexane. The obtained surface modified wet gel was dried at 75 °C under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure (larger pore size and uniform size distribution) as well as enhanced stiffness. However, glycerol also retards surface modification and solvent exchange. The aerogel synthesized with glycerol added to the silica sol maintained a relatively low bulk density compared with the aerogels aged in a mixed ethanol (EtOH)/TEOS solution. The reproducibility of aerogel production was further improved in the aerogel synthesized with glycerol added to the silica sol and aged in a 70%EtOH/30%TEOS solution.  相似文献   

12.
Dissolution and reprecipitation of silica during aging in water improve the wet gels mechanical stiffness and strength, and hence shrinkage during supercritical drying is reduced. We have investigated how the strength and stiffness of a 2-step TEOS acid-base catalyzed wet gel can be improved by aging in a solution of water/ethanol (20–40 vol%) at various temperatures (20–70°C) and time (2 h and 24 h) and how this influences the aerogels properties. The linear shrinkage during supercritical drying was reduced from 29% to 2% by introducing the aging step in the 20 vol% water/ethanol solution for 24 h at 60°C.We have also in previous works introduced the idea of preparing ambient pressure dried silica aerogels by increasing the wet gels stiffness by aging in a TEOS solution until shrinkage during drying is almost eliminated. The gels aged in the water/ethanol solutions were further aged in a TEOS/ethanol solution and the effect of the increasing water content in the pore liquid was studied. A xerogel density of 0.20 g/cm3 is reported for gels with a shear modulus (G) of 30 MPa.  相似文献   

13.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

14.
Interest in improving the optical transmission of sodium silicate-based aerogels by ambient pressure drying led to the synthesis of aerogels using a two-step sol–gel process. To produce optically transparent silica aerogel granules, NH4F (1 M) and HCl (4 M) were used as hydrolyzing and condensation catalysts, respectively. The silica aerogels were characterized by their bulk density, porosity (%), contact angle and thermal conductivity. Optical transmission of as synthesized aerogels was studied by comparing the photos of aerogel granules. Scanning electron microscopic study showed the presence of fractal structures in these aerogels. The degree of transparency in two step sol–gel process-based aerogels is higher than the conventional single step aerogels. The N2 adsorption–desorption analysis depicts that the two step sol–gel based aerogels have large surface areas. Optically transparent silica aerogels with a low density of ∼0.125 g/cc, low thermal conductivity of ∼0.128 W/mK and higher Brunauer, Emmett, and Teller surface area of ∼425 m2/g were obtained by using NH4F (1 M), HCl (4 M), and a molar ratio of Na2SiO3::H2O::trimethylchlorosilane of 1::146.67::9.46. The aerogels retained their hydrophobicity up to 500 °C.  相似文献   

15.
The experimental results of thermal process on the microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths are reported and discussed. With sodium silicate as precursor, ethanol/hexamethyldisiloxane/hydrochloric acid as surface modification agent, the crack-free and high hydrophobic silica aerogel monoliths was obtained possessing the properties as low density (0.096 g/cm3), high surface area (651 m2/g), high hydrophobicity (~147°) and low thermal conductivity (0.0217 Wm/K). Silica aerogels maintained hydrophobic behavior up to 430 °C. After a thermal process changing from room temperature to 300 °C, the hydrophobicity remained unchanged (~128°), of which the porosity was 95.69% and specific density about 0.094 g/cm3. After high temperature treatment (300–500 °C), the density of final product decreased from 0.094 to 0.089 g/cm3 and porosity increased to 96.33%. With surface area of 466 m2/g, porosity of 91.21% and density about 0.113 g/cm3, silica aerogels were at a good state at 800 °C. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.0217 to 0.0981 Wm/K as temperature increased to 800 °C, revealed an excellent heat insulation effect during thermal process.  相似文献   

16.
Hydrophobic porous silica has been prepared by surface modification of TEOS (tetraethylorthosilicate) wet gel with 6 and 12 vol.% of TMCS (trimethylchlorosilane). We characterized the products by using FT-IR, TGA, DTA, N2 adsorption/desorption, contact angle and SEM. Surface silanol groups of the gel were widely replaced by–Si(CH3)3 to result in a hydrophobic SiO2 powder as confirmed by contact angle measurements with H2O, 1-butanol and ethanol. The modified dried gels had a surface area of 950–1000 m2/g (average pore size 120 Å), compared to the non-modified surface which had a surface area of 690 m2/g (average pore size 36 Å). The adsorption/desorption isotherm curves indicated they had similar pore characteristics as aerogels prepared by the supercritical drying process.  相似文献   

17.
The degradation of nitro aromatics like trinitrotoluene (TNT) released in the waste water from explosive process plants is the serious problem due to toxic and explosive nature of TNT. The poor response of TNT to biodegradation enhanced the gravity of the problem. We have demonstrated that high specific surface area TiO2–SiO2 nano-composite aerogel is promising photo catalyst in successful treating of TNT contaminated aqueous solution. The TiO2–SiO2 composite aerogel with nominal content of 20 and 50% TiO2, used as catalyst, were prepared by co-precursor sol–gel method using titanium isopropaxide and tetramethylorthosilicate as source of titania and silica, respectively. The XRD studies confirmed formation of anatase phase of crystalline TiO2 with nano sized crystallites. The TiO2–SiO2 aerogel showed specific surface area of 1,107 and 485 m2/g for the aerogels containing 20 and 50% TiO2, respectively. The 100 ppm TNT solution was treated, in 700 ml capacity reaction vessel, using H2O2 oxidizer and TiO2–SiO2 aerogel catalyst in presence of UV light (8 W UV lamp). Using TiO2–SiO2 (50/50) aerogel with surface area of 485 m2/g, we succeeded to reduce the TOC to 1 ppm within 3.5 h where as using TiO2/SiO2 (20/80) aerogel with surface area of 1,107 m2/g, the TOC was reduced to about only 7 ppm in the same time. It revealed that the combination of high TiO2 content and high specific surface area is an important factor to achieve effective and faster degradation of TNT for complete mineralization.  相似文献   

18.
In previous work we have introduced the idea of preparing ambient pressure dried silica aerogels by increasing the wet gels' stiffness by aging in a TEOS solution until shrinkage during drying is almost eliminated. The present work elucidates the possibilities for obtaining ambient pressure dried aerogels employing this idea, however, cheap water soluble sodium silicate (water glass) precursors have been used to increase the economic feasibility of the process.We have shown how the G modulus of water glass based gels can be increased by aging in TEOS solution and gels with a density down to 0.2 g/cm3 can be obtained. These wet gels show a higher reactivity towards TEOS compared to TEOS based gels. We have also introduced the idea of aging wet gels in a solution where the monomers are provided from water glass instead of TEOS and some initial results on G modulus and density are included.  相似文献   

19.
Lightweight polydicyclopentadiene (pDCPD) based aerogels were developed via a simple sol-gel processing and supercritical drying method. The uniform pDCPD wet gels were first prepared at room temperature and atmospheric pressure through ring opening metathesis polymerization (ROMP) incorporating homogeneous ruthenium catalyst complexes (Grubbs catalyst). Gelation kinetics were significantly affected by both catalyst content and target density (i.e., solid content), while gel solvents also played important role in determining the appearance and uniformity of wet gel and aerogel products. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet pDCPD gels to afford nanoporous aerogel solid. A variety of pDCPD based aerogels were synthesized by varying target density, catalyst content, and solvent and were compared with their xerogel analogs (obtained by ambient pressure solvent removal) for linear shrinkage and thermal conductivity value (1 atm air, 38 °C mean temperature). Target density played a key role in determining porosity and thermal conductivity of the resultant pDCPD aerogel. Differential scanning calorimetery (DSC) demonstrated that the materials as produced were not fully-crosslinked. The pDCPD based aerogel monoliths demonstrated high porosities, low thermal conductivity values, and inherent hydrophobicity. These aerogel materials are very promising candidates for many thermal and acoustic insulation applications including cryogenic insulation.
George L. GouldEmail:
  相似文献   

20.
Over the past decade sol–gel methods have become increasingly popular alternatives to the solid state synthesis of metal oxides. In many cases sol–gel synthesis is preferred due to desirable physical properties such as high surface area, high porosity, and small crystallite size. Monolithic zinc ferrite aerogels were produced by the epoxide addition sol–gel method. It was observed that addition of propylene oxide to 2-propanol solution of either the hydrated metal nitrate salts or the hydrated metal chloride salts resulted in the formation of stable red–brown gels. Aerogels were characterized using powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption analysis. The metal salt used in the synthesis was found to significantly influence the properties of the aerogel. All aerogels synthesized exhibited low densities and high surface areas (>340 m2/g). Annealing of the aerogel at relatively low temperatures (below 450 °C) yielded a highly crystalline porous material which is composed of nanometer sized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号