首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

3.
Here, the confirmation of an oriented nanohybrid shish‐kebab (NHSK) crystalline structure in a series of composites of poly(ethylene terephthalate) (PET) and multiwall carbon nanotubes (MWCNTs) is reported. The combined use of small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and thermal analysis has been used to investigate the morphology development in PET‐MWCNT nanocomposites under hot isothermal crystallization conditions. The MWCNTs act as both heterogeneous nucleating agents and surfaces (oriented shish structures) for the epitaxial growth of PET crystallites (kebabs) giving an oriented crystalline morphology. In contrast, the PET homopolymer does not show any residual oriented crystalline morphology during isothermal crystallization but gave a sporadic nucleation of a classic unoriented lamellar structure with slower crystallization kinetics. The results provide a valuable insight into the role of MWCNTs as nanoparticulate fillers in the morphology development and subsequent modification of physical properties in engineering polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 132–137  相似文献   

4.
Structural changes during deformation in solution‐ and gel‐spun polyacrylonitrile (PAN) fibers with multi‐ and single‐wall carbon nanotubes (CNTs), and vapor‐grown carbon nanofibers were investigated using synchrotron X‐ray scattering. Previously published wide‐angle X‐ray scattering (WAXS) results showed that CNTs deform under load, alter the response of the PAN matrix to stress, and thus enhance the performance of the composite. In this article, we find that the elongated scattering entities that give rise to the small‐angle X‐ray scattering (SAXS) in solution‐spun fibers are the diffuse matrix‐void interfaces that follow the Porod's law, and in gel‐spun fibers these are similar to fractals. The observed smaller fraction of voids in the gel‐spun fibers accounts for the significant increase in the strength of this fiber. The degree of orientation of the surfaces of the voids is in complete agreement with those of the crystalline domains observed in WAXS, and increases reversibly upon stretching in the same way as those of the crystalline domains indicating that the voids are integral parts of the polymer matrix and are surrounded by the crystalline domains in the fibrils. The solution‐spun composite fibers have a larger fraction of the smaller (<10 nm) voids than the corresponding control PAN fibers. Furthermore, the size distribution of the voids during elongation changes greatly in the solution spun PAN fiber, but not so in its composites. The scattered intensity, and therefore the volume fraction of the voids, decreases considerably above the glass transition temperature (Tg) of polymer. Implications of these observations on the interactions between the nanotubes and the polymer are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2394–2409, 2009  相似文献   

5.
The multiple melting behavior of poly(ε‐caprolactone) (PCL) was investigated by real‐time small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements coupling with differential scanning calorimetry (DSC). Semicrystalline specimens prepared by a continuous cooling process showed lengthening of the Bragg period during the progress of double melting. A model of variable thickness of lamella was proposed to fit to the SAXS patterns and revealed that both the crystalline lamella and the amorphous layer contributed to the increase in Bragg period while the later dominated the contribution. The model of variable thickness although satisfied the SAXS data was unable to compromise the data from other probing tools. A modification of the model proposed that each lamella piling up to construct the stacks in the crystallites was itself nonuniform in thickness. The modification with the parallel occurrence of the mechanism of surface melting and crystallization successfully compromised the observations from SAXS, DSC, and optical microscopy and provided a new perspective for the explanation to lengthening of the Bragg period related to multiple melting behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1777–1785, 2010  相似文献   

6.
Summary: The annealing and melting behavior of poly[(R)‐3‐hydroxybutyrate] (P(3HB)) single crystals were followed in real time by synchrotron small‐ (SAXS) and wide‐angle X‐ray scattering (WAXS) measurements. The real‐time SAXS measurements revealed that the P(3HB) single crystal exhibits a discontinuous increase of lamellar thickness during heating. The structural changes as observed by SAXS and WAXS were in response to the thermal properties of single crystals characterized by differential scanning calorimetry.

A series of two‐dimensional small‐angle X‐ray scattering patterns of P(3HB) single crystal mats during the lamellar thickening process.  相似文献   


7.
The processing of nanocomposite materials composed of amine‐cured diglycidyl ether of bisphenol A (DGEBA) reinforced with organomontmorillonite clay is reported. A novel sample preparation scheme was used to process the modified clay in the glassy epoxy network, resulting in nanocomposites where the clay was both exfoliated and intercalated by the epoxy network. The processing scheme involves sonication of the constituent materials in a solvent, followed by solvent extraction to generate a composite with homogeneous dispersions of the nanoclay. Fourier transform infrared spectroscopy (FTIR) and Fourier transform (FT‐)Raman spectroscopy confirmed that the chemical structure of the epoxy network was not affected by the use of solvents in this processing scheme. The glass‐transition temperature, Tg, linearly increased with an increased weight ratio of the nanoclay. The microstructure of clay nanoplatelets in the composites was observed with transmission electron microscopy (TEM), wide‐angle X‐ray scattering (WAXS), and small‐angle X‐ray scattering (SAXS). It was found that the clay nanoplatelets were well‐dispersed, and were intercalated as well as exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4384–4390, 2004  相似文献   

8.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

9.
A layer multiplying coextrusion process was used to produce multilayered polypropylene/polystyrene (PP/PS) films with various nucleating agents. When heated into the melt, the thin PP layers broke up into submicron PP droplets that exhibited fractionated crystallization. If the initial PP layers were 20 nm or less, the resulting droplets exhibited exclusively homogeneous nucleation. If a nucleating agent was added, the systematic departure from homogeneous nucleation provided insight into the nature of the heterogeneous nucleation. In this study, we used thermal analysis, atomic force microscopy (AFM), and wide angle X‐Ray scattering (WAXS) to examine the effect of two nucleating agents. We confirmed with WAXS and AFM that a soluble sorbitol nucleating agent for the PP α‐form operates in three concentration regimes as proposed in a previous study. Morphologically, homogeneous nucleation of the submicron droplets produced a granular texture. The correlation length from small‐angle X‐Ray scattering (SAXS) suggested that the grains contained 1–3 mesophase domains. Drawing on classical nucleation theory, the critical size nucleus of an individual mesophase domain was estimated to be about 2 nm3, which was considerably smaller than the mesophase domain. This pointed to mesophase crystallization that included the processes of nucleation and growth. Additional experiments were performed with nucleating agents for the PP β‐form. However, they were not effective in nucleating crystallization of the droplets, presumably because they were essentially insoluble in PP and the nucleating particles were too large to be accommodated in the PP droplets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
Synchrotron small angle X‐ray scattering (SAXS), wide angle X‐ray scattering (WAXS), and transmission electron microscopy were carried out for an oriented polyethylene‐block‐[atactic poly(propylene)] with a molecular weight of 1.13×105 and a volume fraction of polyethylene of 0.5. Isothermal crystallization at 93°C did not destroy the pre‐formed microdomain, however, with a higher crystallization temperature, the microdomain was more heavily deformed and more crystalline lamella grew. In WAXS profiles, preferential orientation of (020) reflection peak was observed, indicating that the crystalline lamella grew in parallel with the micro domain interface.  相似文献   

11.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

12.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

13.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

14.
Understanding nanoparticle‐formation reactions requires multi‐technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small‐angle X‐ray scattering (SAXS)/wide‐angle X‐ray scattering (WAXS)/total‐scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria‐stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub‐nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit‐cell dimensions. At yttria‐doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time‐resolved nanoparticle size distributions are calculated based on whole‐powder‐pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle‐size distributions occur. In situ total scattering provides structural insight into the sub‐nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six‐coordinated zirconium atoms in the initial amorphous clusters to eight‐coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

15.
A series of diblock copolymers of n‐pentyl methacrylate and methyl methacrylate (PPMA/PMMA BCP) with one or two terminal functional groups was prepared by sequential anionic polymerization of PMA and MMA using an allyl‐functionalized initiator and/or and end‐capping with allyl bromide. Allyl functional groups were successfully converted into OH groups by hydroboration. The morphology in bulk was examined by temperature‐dependent small‐angle X‐ray measurements (T‐SAXS) and transmission electron microscopy (TEM) showing that functional groups induced a weak change in d‐spacings L0 as well as in the thermal expansion behavior. T‐SAXS proved that the lamellar morphologies were stable over multiple heating/cooling cycles without order‐disorder transition (ODT) until 300 °C. While non‐functionalized BCP formed parallel lamellae morphologies, additional OH‐termination at the PMMA block forced in very thin films (ratio between film thickness and lamellar d‐spacing below 1) the generation of perpendicular lamellae morphology through the whole film thickness, as shown by Grazing‐incidence small‐angle X‐ray scattering experiments (GISAXS) measurements. Functionalized BCP were successfully used in thin films as templates for silica nanoparticles in an in‐situ sol–gel process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

17.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

18.
Films with a thousand alternating layers of isotactic polypropylene (PP) and polystyrene (PS) were prepared by layer‐multiplying coextrusion. The crystal structure of extremely thin PP layers confined between PS layers was studied by optical light microscopy (OM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray scattering (WAXS). Changes in structure were observed as the PP layer thickness decreased to the nanoscale. The thin PP discoids were largely composed of edge‐on lamellae with (040) planes lying flat on the interface. In layers 65 and 10‐nm thick, compressed d‐spacings in the directions perpendicular to the chains and loss of registry along the chain axis were suggestive of smectic packing of conformationally distorted chains. Even so, crystalline lamellae were distinguishable in the AFM images. In addition to the crystal population with (040) planes parallel to the interface, the WAXS from layers 65‐nm thick revealed another crystal fraction with (110) planes parallel to the interface and (040) planes perpendicular to the interface. This fraction was more evident in layers 10‐nm thick, where it accounted for approximately 10–20% of the crystallinity. Decreasing layer thickness resulted in a change of the crystal growth plane from the usual (110) to the more rare (010). The new crystal structure possibly served to fill‐in the radial structure of the dendritic discoids when a limitation to the thickness of the layer left only a little space for secondary nucleation of the crosshatched lamella. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3380–3396, 2004  相似文献   

19.
Fracture properties and deformation mechanisms of nanoclay‐reinforced maleic anhydride‐modified polypropylene (MAPP) were investigated. Elastic–plastic fracture mechanics was employed to characterize the toughness in light of substantial postyield deformation for the reinforced MAPP. Upon introduction of 2.5 wt % clay loading in maleated MAPP, it was observed that tensile strength, modulus, and fracture initiation toughness concomitantly increased substantially. Continued increase in clay loading thereafter only led to stiffening and strengthening effects to the detriment of fracture toughness. A plot of the J‐integral initiation fracture toughness versus the plastic zone size demonstrated that toughening arose from plastic deformation in the reinforced matrix. Careful examination of deformed tensile specimens using small angle X‐ray scattering (SAXS) showed 2.5 wt % clay gave rise to the highest equatorial scattering, which indicates the presence of microvoids in the matrix. The SAXS results were consistent with that shown in subcritically loaded crack‐tip deformation zone using transmission electron microscopy. Thus, both macroscale three‐point bend fracture data and SAXS results led us to consistent findings and conclusions. Further increase in clay loading above 2.5 wt % reduced the scattering the matrix plasticity and thus the fracture toughness. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2759–2768, 2004  相似文献   

20.
Surface‐modified CdS nanoparticles selectively dispersed in hexagonally packed poly(ethylene oxide) (PEO) cylinders of poly(styrene‐b‐ethylene oxide) (PSEO) block copolymers were prepared. The photoluminescence and ultraviolet–visible characteristics of the presynthesized CdS nanoparticles in N,N‐dimethylformamide and in PEO domains of the PSEO block copolymers were determined. Because of strong interactions between the CdS nanoparticles and PEO chains, as shown by Fourier transform infrared spectroscopy, the incorporation of the CdS nanoparticles prevented the PEO cylinders from properly crystallizing; this was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. The intercylinder distance between the swollen and reduced‐crystallinity CdS/PEO cylinders in turn increased, as confirmed by small‐angle X‐ray scattering and transmission electron microscopy. At a high CdS concentration (43 wt % or 8.3 vol % with respect to PEO), however, the hexagonally packed cylindrical nanostructure of the PSEO diblock copolymers was destroyed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1220–1229, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号