首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isotopic composition of single uranium and plutonium particles was measured with an inductively coupled plasma mass spectrometer (ICP-MS) and a thermal ionization mass spectrometer (TIMS). Particles deposited on a carbon planchet were first analyzed with an energy dispersive X-ray spectrometer (EDX) attached to a scanning electron microscope (SEM) and then transferred on to a silicon wafer using a manipulator. The particle on the silicon wafer was dissolved with nitric acid and the isotopic ratios of U and Pu were measured with ICP-MS and TIMS. The results obtained by both methods for particles of certified reference materials showed good agreement with the certified values within the expected uncertainty. The measurement uncertainties obtained in this study were similar for both mass spectrometric methods. This study was performed to establish the method of particle analysis with SEM, EDX, the particle manipulation and chemical preparation technique, and the measurement of isotopic ratios of U and Pu in a single particle by mass spectrometry.  相似文献   

2.
The main objective of this research is to prepare iron nanoclusters with more porous structure by the pulsed current electrochemical method. In this method, there are some effective parameters including; pulse amplitude (current amount), pulse frequency, iron salt concentration, sulfuric acid concentration and synthesis temperature, which were optimized by the “one at a time method”. An iron optimized nanopowder was synthesized by using iron sulfate (0.005 M) as precursor and silver nitrate as a nucleation agent (at 0.5% mole of iron sulfate in the starting solution) by pulsed current of 20 mA cm−2 with a frequency of 14 Hz. The relative gravimetrical density was used as an optimizing parameter for iron nanoparticles synthesis. The morphology and particle size of each synthesized sample was studied by SEM, TEM and XRD. The iron nanopowder synthesized in the optimum conditions has excellent uniform and a more porous structure including nanoclusters with a particle size of approximately 20–40 nm. The obtained results indicate that the pulsed current electrochemical method can be used as a confident and controllable method for the preparation of iron nanoparticles. XRD, EDX and ICP-AES results showed that the iron nanoclusters can be synthesized with high purity by the proposed method.  相似文献   

3.
Particle monolayer formation at the air–water interface by polymer‐grafted colloidal silica was investigated. Methyl methacrylate (MMA) was polymerized from initiative bromide groups at colloidal silica surface by atom transfer radical polymerization. We obtained polymer‐grafted silica particle (SiO2‐PMMA) with relative narrow polydispersity of PMMA. For the polymer‐grafted particle with high graft density, particle monolayer formation was confirmed by π‐A isotherm measurement and SEM observation. Interparticle distance was controllable by surface pressure. Furthermore, grafted polymer chains were suggested to be fairly extended at the air–water interface. However, for the polymer‐grafted particle with low graft density, monolayer structure on substrate showed aggregation and voids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2789–2797, 2006  相似文献   

4.
《Electroanalysis》2018,30(5):969-974
A new chemically modified electrode based on titanium dioxide nanoparticles (TiO2‐NPs) has been developed. Aluminium was incorporated into the TiO2‐NPs to prepare aluminium doped TiO2 nanoparticles (Al‐TiO2‐NPs). Aluminium doped TiO2 nanoparticles‐modified screen printed carbon electrode (Al‐TiO2‐NPs/SPCE) was employed as easy, efficient and rapid sensor for electrochemical detection of vanillin in various types of food samples. Al‐TiO2‐NPs were characterized by energy‐dispersive X‐ray (EDX), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) and analyses showing that the average particle sizes varied for the Al‐NPs (7.63 nm) and Al‐TiO2‐NPs (7.47 nm) with spherical crystal. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to optimize the analytical procedure. A detection limit of vanillin was 0.02 μM, and the relative standard deviation (RSD) was 3.50 %, obtained for a 5.0 μM concentration of vanillin. The electrochemical behaviour of several compounds, such as vanillic acid, vanillic alcohol, p‐hydroxybenzaldehyde and p‐hydroxybenzoic, etc., generally present in natural vanilla samples, were also studied to check the interferences with respect to vanillin voltammetric signal. The applicability was demonstrated by analysing food samples. The obtained results were compared with those provided by a previous method based on liquid chromatography for determination of vanillin.  相似文献   

5.
X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive system (EDX) were used in order to obtain mineralogical and chemical composition of white and reddish pigments belonging to the Ambato style of “Aguada” culture, found in the archaeological site of Piedras Blancas (Catamarca, Argentina 500–1100 AD). These pigments are associated with different sectors, two of them being related to funerary context. Due the scarce amount of samples available, it was necessary to develop a new methodology for their study. X-ray diffraction spectra were collected using a low background Si sample holder, which allows the study of small sample amounts (a few milligrams). The mineral quantifications were carried out by applying the Rietveld method to the XRD spectra. The major difficulties arose for reddish pigments, since they contain iron-bearing phases, such as ferruginous clays, in which neither the concentration of Fe+ 2 relative to Fe+ 3 nor the location in the lattice (occupancy factor) is completely known. With the aim of performing quantitative elemental analysis from SEM-EDX spectra, a special sample holder for the small amounts of available samples was developed. Commercial standards were used in the quantification process and the characteristic intensities were corrected for matrix effects. Micrographs and EDX point spectra allowed the characterization of minor phases and particle analysis. The Rietveld method combined with the new procedure for EDX analysis has proven to be a suitable method for routine quantitative analysis of small amounts of archaeological pigments.  相似文献   

6.
Heterogeneous reaction kinetics of gaseous nitric acid with deliquesced sodium chloride particles NaCl(aq) + HNO3(g) --> NaNO3(aq) + HCl(g) were investigated with a novel particle-on-substrate stagnation flow reactor (PS-SFR) approach under conditions, including particle size, relative humidity, and reaction time, directly relevant to the atmospheric chemistry of sea salt particles. Particles deposited onto an electron microscopy grid substrate were exposed to the reacting gas at atmospheric pressure and room temperature by impingement via a stagnation flow inside the reactor. The reactor design and choice of flow parameters were guided by computational fluid dynamics to ensure uniformity of the diffusion flux to all particles undergoing reaction. The reaction kinetics was followed by observing chloride depletion in the particles by computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The validity of the current approach was examined first by conducting experiments with median dry particle diameter D(p) = 0.82 microm, 80% relative humidity, particle loading densities 4 x 10(4) 相似文献   

7.
Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 /= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.  相似文献   

8.
We measured nucleation and growth rates of poly(L-lactic acid) (PLLA) microparticles produced during precipitation with a compressed-fluid antisolvent (PCA). The injector/precipitator used in this study satisfied the constraints and assumptions incorporated in the development of the mixed-suspension, mixed-product-removal population balance theory. A semicontinuous operation mode with batch product filtering was developed, and results from product particle size distributions allowed nucleation and growth rates to be determined through the use of population balances. Kinetic data, obtained by operating the precipitator under various degrees of supersaturation and suspension density, were used to generate a nucleation rate model for PLLA. Model results indicate a relative kinetic order of 1 and a linear dependence of the nucleation rate on the suspension density. First-order dependence of the nucleation rate on suspension density suggests secondary nucleation mechanism(s) are operative within this PCA flow system and may explain the relative insensitivity of particle size distributions to changes in PCA operating conditions.  相似文献   

9.
A theoretical study is presented for the dynamic electrophoretic response of a charged spherical particle in an unbounded electrolyte solution to a step change in the applied electric field. The electric double layer surrounding the particle may have an arbitrary thickness relative to the particle radius. The transient Stokes equations modified with the electrostatic effect which govern the fluid velocity field are linearized by assuming that the system is only slightly distorted from equilibrium. Semianalytical results for the transient electrophoretic mobility of the particle are obtained as a function of relevant parameters by using the Debye-Huckel approximation. The results demonstrate that the electrophoretic mobility of a particle with a constant relative mass density at a specified dimensionless time normalized by its steady-state quantity decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. For a given value of kappaa, a heavier particle lags behind a lighter one in the development of the electrophoretic mobility. In the limits of kappaa --> infinity and kappaa = 0, our results reduce to the corresponding analytical solutions available in the literature. The electrophoretic acceleration of the particle is a monotonic decreasing function of the time for any fixed value of kappaa. In practical applications, the effect of the relaxation time for the transient electrophoresis is negligible, regardless of the value of kappaa or the relative mass density of the particle.  相似文献   

10.
Palladium catalysts (1–10 wt.% Pd) supported on silica were prepared by hydrazine reduction of palladium chloride at room temperature. They were characterized by XRD, TEM, EDX, H2-adsorption, and H2-TPD and tested in the gas phase hydrogenation of benzene in the temperature range 75–250 °C. A conventional catalyst (1 wt.% Pd) obtained by calcination then hydrogen reduction of the same metal precursor was studied for comparison. Metal particles with a size range 6.8–28.4 nm were obtained. Dispersion, hydrogen storage and activity in benzene hydrogenation increased with decreasing particle size. In comparison, the classical catalyst was found much more dispersed (mean particle size of 1.6 nm) and more active (specific rate 1.6–3.7 times higher) than the homolog hydrazine catalyst. However, unexpectedly, turnover frequency (TOF) calculations indicated a greater reactivity of the metal surface atoms for the hydrazine catalyst. It also stored more hydrogen. These contrasting results are discussed in relation with the metal particle morphology.  相似文献   

11.
CaAl-layered double hydroxides (CaAl-LDHs) with various carbonate ion contents are essentially formed in Bayer liquors during the causticisation step in alumina production. Under well-defined conditions hemicarbonate is formed, which is beneficial in the process of retrieving both Al(OH) 4 ? and OH? ions. In the current work, Ca2Al-LDHs with various carbonate contents were prepared by the co-precipitation procedure and the products were dried in different ways. Structural information was obtained by a variety of methods, such as X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Elemental maps were constructed through a combination of SEM images and EDX measurements. The targeted CaAl-hydrocalumites were successfully synthesised. It was found that the method used for drying did not influence the basal spacing although it significantly altered the particle sizes.  相似文献   

12.
The possibility of scanning electron microscope (SEM) observation and energy dispersive X-ray (EDX) spectrometry analysis in microscale regions of insulating samples using diluted ionic liquid was investigated. It is possible to obtain clear secondary electron images of insulating samples such as a rock and mineral at 5,000 times magnification by dropping 10 μL of 1 wt% of 1-ethyl-3-methylimidazolium acetate (EMI-CH?COO) diluted with ethanol onto the samples. We also obtained EDX spectra of the samples in microscale regions (~5 μm2) without overlapping EDX spectra of other minerals with different composition. It might be possible to perform quantitative analysis of the samples if a method that does not need standard samples is applied or an X-ray detector sensitive for light elements was attached. The method of dropping 1 wt% EMI-CH?COO diluted with ethanol onto insulating samples is useful for SEM observation, EDX analysis in microscale regions, and the preservation of scarce rock and mineral samples because ionic liquid can be easily removed with acetone.  相似文献   

13.
《Microchemical Journal》2011,97(2):259-268
X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive system (EDX) were used in order to obtain mineralogical and chemical composition of white and reddish pigments belonging to the Ambato style of “Aguada” culture, found in the archaeological site of Piedras Blancas (Catamarca, Argentina 500–1100 AD). These pigments are associated with different sectors, two of them being related to funerary context. Due the scarce amount of samples available, it was necessary to develop a new methodology for their study. X-ray diffraction spectra were collected using a low background Si sample holder, which allows the study of small sample amounts (a few milligrams). The mineral quantifications were carried out by applying the Rietveld method to the XRD spectra. The major difficulties arose for reddish pigments, since they contain iron-bearing phases, such as ferruginous clays, in which neither the concentration of Fe+ 2 relative to Fe+ 3 nor the location in the lattice (occupancy factor) is completely known. With the aim of performing quantitative elemental analysis from SEM-EDX spectra, a special sample holder for the small amounts of available samples was developed. Commercial standards were used in the quantification process and the characteristic intensities were corrected for matrix effects. Micrographs and EDX point spectra allowed the characterization of minor phases and particle analysis. The Rietveld method combined with the new procedure for EDX analysis has proven to be a suitable method for routine quantitative analysis of small amounts of archaeological pigments.  相似文献   

14.
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.  相似文献   

15.
The incidence of thrombotic complications in SARS-CoV-2 infections has become a global concern; thus, anticoagulants are an integral part of the treatment. Edoxaban (EDX) is an oral anticoagulant suitable for pharmacologic thromboprophylaxis. Herein, two novel analytical methods for EDX determination in tablets are developed and validated using capillary zone electrophoresis (CZE) and high-performance liquid chromatography (HPLC). Operating conditions such as the electrolyte's concentration and pH value, injection time, volume, and the capillary temperature, were optimized. The methods were successfully validated by establishing the linearity, intra- and inter-day precisions (relative standard deviation [%]), accuracy, and robustness. Adequate separation of excipients and degradation products of EDX generated by stress degradation conditions demonstrated the stability-indicating capability of the methods. The analytical procedures were linear in the range of 25–125 µg/ml (r > 0.999), with the limits of detection and quantification of 3.26 and 10.87 µg/ml for CZE and 0.740 and 2.78 µg/ml for HPLC. Although both methodologies are suitable for determining EDX in tablets, CZE provides a greener alternative due to low-cost analysis using less organic solvents and minimizing waste generation.  相似文献   

16.
The “fingerprinting” of a molecular structure obtained by micro-Raman spectroscopy (MRS) can be successfully complemented by means of X-ray spot analysis through the application of scanning electron microscopy equipped with an X-ray detector (SEM/EDX). The elemental composition revealed by SEM/EDX is essential for a correct interpretation of the collected Raman spectra. The results presented here illustrate how the two techniques can be combined to characterize geological samples, especially in the case of individual particles. The samples involved in the experiments were Zr- and Ti-bearing sand from South Africa (with major minerals such as zircon and rutile) and U mine tailings from Hungary (rich with feldspars, quartz and sulphate minerals). Mineral phases detected by MRS were identified according to their respective main Raman shifts, with a spatial resolution up to 1 μm, depending on the parameters set. Some unusual and sometimes inexplicable Raman activity was observed, which was ascribed to and rationalized by the presence of accompanying elements as detected with EDX. The relocation of a particle by means of the two instruments was facilitated with TEM grids. Although the limitations of the sequential use of SEM/EDX and MRS, such as different beam sizes, probing depth and surface topography, should be considered in their application to the analysis of individual geological particles, the two methods appeared to be complementary. Not only do they provide correlated chemical information about the sample, but also enable chemical characterization that would be otherwise incomplete when analyzed on a stand-alone basis.  相似文献   

17.
Pt/carbon nanofiber (Pt/CNF) nanocomposites were facilely synthesized by the reduction of hexachloroplatinic acid (H(2)PtCl(6)) using formic acid (HCOOH) in aqueous solution containing electrospun carbon nanofibers at room temperature. The obtained Pt/CNF nanocomposites were characterized by TEM and EDX. The Pt nanoparticles could in situ grow on the surface of CNFs with small particle size, high loading density, and uniform dispersion by adjusting the concentration of H(2)PtCl(6) precursor. The electrocatalytic activities of the Pt/CNF nanocomposites were also studied. These Pt/CNF nanocomposites exhibited higher electrocatalytic activity toward methanol oxidation reaction compared with commercial E-TEK Pt/C catalyst. The results presented may offer a new approach to facilely synthesize direct methanol fuel cells (DMFCs) catalyst with enhanced electrocatalytic activity and low cost.  相似文献   

18.
A mass restriction principle has been applied for the synthesis of precipitated calcium carbonate (PCC) with particle sizes from nanometer to micrometer via a simple emulsion liquid membrane (ELM) process. The internal liquid droplets in ELM were designed as individual microreactors in which the concentration and the total mass of the reaction chemicals were carefully mediated. Instrumental analysis, such as Fourier transform infrared (FTIR), wide X-ray diffraction (WXRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis, confirmed a predominant calcite form of the final product via this process. The comparison of calculated particle sizes with that obtained from experimental measurements using dynamic light scattering (DLS), transmission electron microscopy (TEM) and SEM analysis suggested that approximately one PCC particle was formed in one water-in-oil (w/o) droplet.  相似文献   

19.
The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles.In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best.An empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates.  相似文献   

20.
Carbon materials derived from zeolitic imidazolate framework-8 (ZIF-8) and composites thereof have been intensively investigated in supercapacitors. The particle size of the used ZIF-8 ranges from dozens of nanometers to several microns. However, the influence of the particle size of ZIF-8 on the capacitive performances is still not clear. A series of ZIF-8 with different particle sizes (from 25 to 296 nm) has been synthesized and carbonized for supercapacitors. Based on TEM, EDX mapping, XRD, Raman, nitrogen adsorption–desorption, XPS, and the results of electrochemical tests, the optimal particle size (≈70 nm) for superior supercapacitor performances in both acidic and alkaline electrolytes has been obtained. This important result provides a significant reference to guide future ZIF-8 related research to achieve the best electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号