首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks.  相似文献   

2.
《Physics letters. A》2006,352(3):196-201
We investigate the critical behavior of pairwise entanglement at quantum phase transitions (QPT) in several exactly solvable spin models with noise in system control parameters. We show that the exact critical behavior will change due to noise. When the noise is not too large, pairwise entanglement is robust as a signature of QPT in some spin models.  相似文献   

3.
We suggest a scheme to probe critical phenomena at a quantum phase transition (QPT) using the quantum correlation of two photonic modes simultaneously coupled to a critical system. As an experimentally accessible physical implementation, a circuit QED system is formed by a capacitively coupled Josephson junction qubit array interacting with one superconducting transmission line resonator (TLR). It realizes an Ising chain in the transverse field (ICTF) which interacts with the two magnetic modes propagating in the TLR. We demonstrate that in the vicinity of criticality the originally independent fields tend to display photon bunching effects due to their interaction with the ICTF. Thus, the occurrence of the QPT is reflected by the quantum characteristics of the photonic fields.  相似文献   

4.
冯啸天  袁春华  陈丽清  陈洁菲  张可烨  张卫平 《物理学报》2018,67(16):164204-164204
物理量的测量与单位标准的统一推动了计量学的发展.量子力学的建立,激光技术的发明以及原子与分子物理学的发展,在原理与技术上进一步刷新了计量学的研究内涵,特别是激光干涉与原子频标技术的发展,引起了计量学革命性的飞跃.基于激光干涉的引力波测量、激光陀螺仪,基于原子干涉的原子钟、原子陀螺仪等精密测量技术相继诞生,一个以量子物理为基础,探索与开拓物理量精密测量方法与技术的新的科学分支——量子计量学(Quantum Metrology)已然兴起.干涉是计量学中最常用的相位测量方法.量子干涉技术,其相位测量精度能够突破标准量子极限的限制,是量子计量学与量子测量技术的核心研究内容.本文重点介绍近几年我们在量子干涉方面所取得的新开拓与新发展,主要内容包括基于原子系综中四波混频过程的SU(1,1)型光量子关联干涉仪和基于原子系综中拉曼散射过程的光-原子混合干涉仪.  相似文献   

5.
In quantum metrology, the precision of unknown parameter estimation is studied in the quantum regime, and the choice of the probe state plays an important role in determining the precision of the parameter to be estimated. The quality of quantum metrology will be reduced in the presence of quantum noise during the memory time of probe states after preparation. Meanwhile the noisy probe state can be manipulated by different protocols such as single‐qubit purification, entanglement purification, and entanglement distillation etc. In this paper, the effects of these manipulations on the usefulness, that is, quantum Fisher information (QFI), of the noisy probe state in quantum metrology are studied. The results show that joint operations in single‐qubit purification and entanglement purification processes play positive roles in enhancing the QFI of the probe states, and local measurements in entanglement purification and entanglement distillation processes play both positive and negative roles in enhancing the QFI of the probe states. In this sense, single‐qubit purification will always be helpful in parameter estimation by using single qubits as probe, and entanglement purification process maybe more suitable for improving the estimation precision when entangled‐state probe is adopted.  相似文献   

6.
The quantum phase transition(QPT) and quantum criticality of an anisotropic spin-1/2 XY chain under the interplay of magnetic field and Dzyaloshinskii–Moriya(DM) interaction, which is interpreted as an electric field, are investigated, wherein the anisotropic parameter plays a similar role as the superconducting pairing gap in the interacting Kitaev topological superconductor model that protects the topological order. It is shown that the thermal Drude weight is a good quantity to characterize the gapped(D_(th) = 0) and gapless(D_(th) 0) ground states. The continuous QPT is marked by a quantum critical point(QCP) associated with entropy accumulation, which is manifested by a characteristic Güneisen ratio(GR) with or without selfduality symmetry. It is shown that at a self-dual QCP, the GR keeps a finite value as T→0,while at a general QCP without self-duality symmetry, it displays a power-law temperature dependent divergence: Γ(T,r_c)~±T~(-1),which provides a novel thermodynamic means for probing QPT.  相似文献   

7.
We report measurements on ultrathin,doubly connected superconducting cylinders of Al that exhibit a destructive regime,which refers to the loss of superconductivity in a doubly connected superconductor near applied half flux quanta due to the sample topology and the small size of the sample.A depairing quantum phase transition(QPT)between a superconducting and metallic state tuned by the magnetic flux enclosed in the quasi one-dimensional(1D)cylinder was found at the onset of the destructive regime.Results on magnetic flux and temperature dependent sample resistance as well as current-voltage characteristics revealed the presence of both thermally activated and quantum phase slips near the depairing QPT.On the superconducting side of the QPT,thermally activated phase slips as described by the Langer-Ambegaokar and McCumber-Halperin(LAMH)theory were found to describe the sample resistance as the system was pushed towards the QPT by a magnetic field applied along the cylinder axis.However,deviation from this behavior was found at low temperatures,signaling the presence of the quantum phase slips.Most importantly,we observed a highly unusual negative slope in the resistance versus temperature curves on the metallic side of the QPT as predicted by the diagrammatic calculation of the dc conductivities in a 1D system near a depairing QPT.Our work suggests that fluctuations from both the phase and the amplitude of the superconducting order parameter are important for the superconductor-to-metal depairing QPT.  相似文献   

8.
We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. The parity breaking mentioned in our case is completely different from the spontaneously broken symmetry relevant to the conventionally defined QPT in previous studies. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no- degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to incorrect employment of the ground state of the model and/or unreasonable treatment of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.  相似文献   

9.
低频标准真空涨落的测量   总被引:1,自引:0,他引:1       下载免费PDF全文
薛佳  秦际良  张玉驰  李刚  张鹏飞  张天才  彭堃墀 《物理学报》2016,65(4):44211-044211
采用自平衡零拍方案, 对低频段的标准量子真空涨落进行了测量. 实验确定了该系统的饱和光功率约为3.2 mW. 在10 Hz–400 kHz的频率范围内, 系统的共模抑制比平均为55 dB, 在100 Hz处高达63 dB, 对激光经典技术噪声具有很强的抑制作用. 当入射光功率为400 μ W 时, 真空涨落噪声达到11 dB. 此低频量子真空噪声探测系统可广泛应用于量子计量和量子光学等研究领域.  相似文献   

10.
We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. The parity breaking mentioned in our case is completely different from the spontaneously broken symmetry relevant to the conventionally defined QPT in previous studies. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to incorrect employment of the ground state of the model and/or unreasonable treatment of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.  相似文献   

11.
We report a study of the ferromagnetism of ZrZn2, the most promising material to exhibit ferromagnetic quantum criticality, at low temperatures T as a function of pressure p. We find that the ordered ferromagnetic moment disappears discontinuously at p(c)=16.5 kbar. Thus a tricritical point separates a line of first order ferromagnetic transitions from second order (continuous) transitions at higher temperature. We also identify two lines of transitions of the magnetization isotherms up to 12 T in the p-T plane where the derivative of the magnetization changes rapidly. These quantum phase transitions (QPT) establish a high sensitivity to local minima in the free energy in ZrZn2, thus strongly suggesting that QPT in itinerant ferromagnets are always first order.  相似文献   

12.
Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh–DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivity is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.  相似文献   

13.
14.
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are.  相似文献   

15.
To elucidate a quantum phase transition (QPT) in Bi(2)Sr(2-x)La(x)CuO(6+delta), we measure charge and heat transport properties at very low temperatures and examine the following characteristics for a wide range of doping: normal-state resistivity anisotropy under 58 T, temperature dependence of the in-plane thermal conductivity kappa(ab), and the magnetic-field dependence of kappa(ab). It turns out that all of them show signatures of a QPT at the 1/8 hole doping. Together with the recent normal-state Hall measurements under 58 T that signified the existence of a QPT at optimum doping, the present results indicate that there are two QPTs in the superconducting doping regime of this material.  相似文献   

16.
17.
We analytically investigate the dynamics of quantum Fisher information of two qubits in independent environments for both uncorrelated and entangled input states. Especially, we observe that, in the non-Markovian regime and resonant case, quantum Fisher information of uncorrelated input state vanishes only at discrete time point whereas that of entangled input state can disappear during finite time interval. It shows that quantum Fisher information, which determines the parameter estimation precision, is strongly affected by the environment memory effects, and the advantage of entanglement-enhance metrology no longer exists even for a very short time. We also note that quantum Fisher information for two kinds of input states can be preserved under appropriate qubit-reservoir detuning.  相似文献   

18.
Generation of squeezed light source is a promising technique to overcome the standard quantum limit in precision measurement. Here, we demonstrate an experimental generation of quadrature squeezing resonating on the cesium D2 line down to 10 Hz for the first time. The maximum squeezing in audio frequency band is 5.57 dB. Moreover, we have presented a single-photon modulation locking to control the squeezing angle, while effectively suppressing the influence of laser noise on low-frequency squeezing. The whole system operates steadily for hours. The generated low-frequency squeezed light source can be applied in quantum metrology, light−matter interaction investigation and quantum memory in the audio frequency band and even below.  相似文献   

19.
We analytically investigate the dynamics of quantum Fisher information of two qubits in independent environments for both uncorrelated and entangled input states.Especially,we observe that,in the non-Markovian regime and resonant case,quantum Fisher information of uncorrelated input state vanishes only at discrete time point whereas that of entangled input state can disappear during finite time interval.It shows that quantum Fisher information,which determines the parameter estimation precision,is strongly affected by the environment memory effects,and the advantage of entanglement-enhance metrology no longer exists even for a very short time.We also note that quantum Fisher information for two kinds of input states can be preserved under appropriate qubit-reservoir detuning.  相似文献   

20.
The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号