首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this article, we extend the fourth‐order compact boundary scheme in Liao et al. (Numer Methods Partial Differential Equations 18 (2002), 340–354) to a 3D problem and then combine it with the fourth‐order compact alternating direction implicit (ADI) method in Gu et al. (J Comput Appl Math 155 (2003), 1–17) to solve the 3D reaction‐diffusion equation with Neumann boundary condition. First, the reaction‐diffusion equation is solved with a compact fourth‐order finite difference method based on the Padé approximation, which is then combined with the ADI method and a fourth‐order compact scheme to approximate the Neumann boundary condition, to obtain fourth order accuracy in space. The accuracy in the temporal dimension is improved to fourth order by applying the Richardson extrapolation technique, although the unconditional stability of the numerical method is proved, and several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed new algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
We consider a scheme for nonlinear (degenerate) convection dominant diffusion problems that arise in contaminant transport in porous media with equilibrium adsorption isotherm. This scheme is based on a regularization relaxation scheme that has been introduced by Jäger and Ka?ur (Numer Math 60:407–427, 1991; M2AN Math Model Numer Anal 29(N5):605–627, 1995) with a type of numerical integration by Bermejo (SIAM J Numer Anal 32:425–455, 1995) to the modified method of characteristics with adjusted advection MMOCAA that was recently developed by Douglas et al. (Numer Math 83(3):353–369, 1999; Comput Geosci 1:155–190, 1997). We present another variant of adjusting advection method. The convergence of the scheme is proved. An error estimate of the approximated scheme is derived. Computational experiments are carried out to illustrate the capability of the scheme to conserve the mass.  相似文献   

3.
We present in this article a very adapted finite volume numerical scheme for transport type‐equation. The scheme is an hybrid one combining an anti‐dissipative method with down‐winding approach for the flux (Després and Lagoutière, C R Acad Sci Paris Sér I Math 328(10) (1999), 939–944; Goudon, Lagoutière, and Tine, Math Method Appl Sci 23(7) (2013), 1177–1215) and an high accurate method as the WENO5 one (Jiang and Shu, J Comput Phys 126 (1996), 202–228). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type‐equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1114–1142, 2017  相似文献   

4.
Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided.  相似文献   

5.
Higher order non‐Fickian diffusion theories involve fourth‐order linear partial differential equations and their solutions. A quintic polynomial spline technique is used for the numerical solutions of fourth‐order partial differential equations with Caputo time fractional derivative on a finite domain. These equations occur in many applications in real life problems such as modeling of plates and thin beams, strain gradient elasticity, and phase separation in binary mixtures, which are basic elements in engineering structures and are of great practical significance to civil, mechanical, and aerospace engineering. The quintic polynomial spline technique is used for space discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence analysis are also discussed. The numerical results are given, which demonstrate the effectiveness and accuracy of the numerical method. The numerical results obtained in this article are also compared favorably well with the results of (S. S. Siddiqi and S. Arshed, Int. J. Comput. Math. 92 (2015), 1496–1518). © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 445–466, 2017  相似文献   

6.
In this article, we are concerned with the numerical treatment of nonlinear elliptic boundary value problems. Our method of choice is a domain decomposition strategy. Partially following the lines from (Cohen, Dahmen and deVore, SIAM J Numer Anal 41 (2003), 1785–1823; Kappei, Appl Anal J Sci 90 (2011), 1323–1353; Lui, SIAM J Sci Comput 21 (2000), 1506–1523; Stevenson and Werner, Math Comp 78 (2009), 619–644), we develop an adaptive additive Schwarz method using wavelet frames. We show that the method converges with an asymptotically optimal rate and support our theoretical results with numerical tests in one and two space dimensions. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

7.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

8.
In this paper a new method for the numerical computation of characteristic roots for linear autonomous systems of Delay Differential Equations (DDEs) is proposed. The new approach enlarges the class of methods recently developed (see [SIAM J. Numer. Anal. 40 (2002) 629; D. Breda, Methods for numerical computation of characteristic roots for delay differential equations: experimental comparison, in: BIOCOMP2002: Topics in Biomathematics and Related Computational Problems at the Beginning of the Third Millennium, Vietri, Italy, 2002, Sci. Math. Jpn. 58 (2) pp. 377–388; D. Breda, The infinitesimal generator approach for the computation of characteristic roots for delay differential equations using BDF methods, Research Report RR2/2002, Department of Mathematics and Computer Science, Università di Udine, Italy, 2002; IMA J. Numer. Anal. 24 (2004) 1; SIAM J. Sci. Comput. (2004), in press]) and in particular it is based on a Runge–Kutta (RK) time discretization of the solution operator associated with the system. Hence this paper revisits the Linear Multistep (LMS) approach presented in [SIAM J. Numer. Anal. 40 (2002) 629] for the multiple discrete delay case and moreover extends it to the distributed delay case. We prove that the method converges with the same order as the underlying RK scheme and illustrate this with some numerical tests that are also used to compare the method with other existing techniques.  相似文献   

9.
Multispecies kinematic flow models are defined by systems of strongly coupled, nonlinear first‐order conservation laws. They arise in various applications including sedimentation of polydisperse suspensions and multiclass vehicular traffic. Their numerical approximation is a challenge since the eigenvalues and eigenvectors of the corresponding flux Jacobian matrix have no closed algebraic form. It is demonstrated that a recently introduced class of fast first‐order finite volume solvers, called polynomial viscosity matrix (PVM) methods [M. J. Castro Díaz and E. Fernández‐Nieto, SIAM J Sci Comput 34 (2012), A2173–A2196], can be adapted to multispecies kinematic flows. PVM methods have the advantage that they only need some information about the eigenvalues of the flux Jacobian, and no spectral decomposition of a Roe matrix is needed. In fact, the so‐called interlacing property (of eigenvalues with known velocity functions), which holds for several important multispecies kinematic flow models, provides sufficient information for the implementation of PVM methods. Several variants of PVM methods (differing in polynomial degree and the underlying quadrature formula to approximate the Roe matrix) are compared by numerical experiments. It turns out that PVM methods are competitive in accuracy and efficiency with several existing methods, including the Harten, Lax, and van Leer method and a spectral weighted essentially non‐oscillatory scheme that is based on the same interlacing property. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1265–1288, 2016  相似文献   

10.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over‐specified boundary in the case of the alternating iterative algorithm of Kozlov et al. (USSR Comput Math Math Phys 31 (1991), 45–52) applied to the Cauchy problem for the two‐dimensional modified Helmholtz equation. The two mixed, well‐posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is selected according to the generalized cross‐validation criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the modified Helmholtz equation in two‐dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

11.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

12.
We study the reconstruction of the missing thermal and mechanical data on an inaccessible part of the boundary in the case of two‐dimensional linear isotropic thermoelastic materials from overprescribed noisy measurements taken on the remaining accessible boundary part. This inverse problem is solved by using the method of fundamental solutions together with the method of particular solutions. The stabilization of this inverse problem is achieved using several singular value decomposition (SVD)‐based regularization methods, such as the Tikhonov regularization method (Tikhonov and Arsenin, Methods for solving ill‐posed problems, Nauka, Moscow, 1986), the damped SVD and the truncated SVD (Hansen, Rank‐deficient and discrete ill‐posed problems: numerical aspects of linear inversion, SIAM, Philadelphia, 1998), whilst the optimal regularization parameter is selected according to the discrepancy principle (Morozov, Sov Math Doklady 7 (1966), 414–417), generalized cross‐validation criterion (Golub et al. Technometrics 22 (1979), 1–35) and Hansen's L‐curve method (Hansen and O'Leary, SIAM J Sci Comput 14 (1993), 1487–503). © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 168–201, 2015  相似文献   

13.
The MAOR method as a generalization of the well-known MSOR method was introduced by Hadjidimos et al. (Appl. Numer. Math. 10 (1992) 115–127) and investigated in Y. Song (J. Comput. Appl. Math. 79 (1997) 299–317) where some convergence results for the case when matrix of the system is strictly diagonally dominant are obtained. In this paper we shall improve these results.  相似文献   

14.
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et?al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.  相似文献   

15.
For elliptic interface problems with flux jumps, this article studies robust residual‐ and recovery‐based a posteriori error estimators for the conforming finite element approximation. The residual estimator is a natural extension of that developed in [Bernardi and Verfürth, Numer Math 85 (2000), 579–608; Petzoldt, Adv Comp Math 16 (2002), 47–75], and the recovery estimator is a nontrivial extension of our method developed in Cai and Zhang, SIAM J Numer Anal 47 (2009) 2132–2156. It is shown theoretically that reliability and efficiency bounds of these error estimators are independent of the jumps provided that the distribution of the coefficients is locally monotone. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28:476–491, 2012  相似文献   

16.
In this continuing paper of (Zhu and Qiu, J Comput Phys 318 (2016), 110–121), a new fifth order finite difference weighted essentially non‐oscillatory (WENO) scheme is designed to approximate the viscosity numerical solution of the Hamilton‐Jacobi equations. This new WENO scheme uses the same numbers of spatial nodes as the classical fifth order WENO scheme which is proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143), and could get less absolute truncation errors and obtain the same order of accuracy in smooth region simultaneously avoiding spurious oscillations nearby discontinuities. Such new WENO scheme is a convex combination of a fourth degree accurate polynomial and two linear polynomials in a WENO type fashion in the spatial reconstruction procedures. The linear weights of three polynomials are artificially set to be any random positive constants with a minor restriction and the new nonlinear weights are proposed for the sake of keeping the accuracy of the scheme in smooth region, avoiding spurious oscillations and keeping sharp discontinuous transitions in nonsmooth region simultaneously. The main advantages of such new WENO scheme comparing with the classical WENO scheme proposed by Jiang and Peng (SIAM J Sci Comput 21 (2000), 2126–2143) are its efficiency, robustness and easy implementation to higher dimensions. Extensive numerical tests are performed to illustrate the capability of the new fifth WENO scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1095–1113, 2017  相似文献   

17.
In Loula and Zhou [Comput Appl Math 20 (2001), 321–339], a thermally coupled nonlinear elliptic system modeling a large class of engineering problems was considered, and some mathematical and numerical analyses (C0 Lagrangian finite elements combined with a fixed point algorithm) were given. To continue our work, we propose in this article a mixed method for the potential equation and present the corresponding analyses and numerical implementations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

18.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

19.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

20.
Diffusive relaxation systems provide a general framework to approximate nonlinear diffusion problems, also in the degenerate case (Aregba-Driollet et al. in Math. Comput. 73(245):63–94, 2004; Boscarino et al. in Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, 2011; Cavalli et al. in SIAM J. Sci. Comput. 34:A137–A160, 2012; SIAM J. Numer. Anal. 45(5):2098–2119, 2007; Naldi and Pareschi in SIAM J. Numer. Anal. 37:1246–1270, 2000; Naldi et al. in Surveys Math. Indust. 10(4):315–343, 2002). Their discretization is usually obtained by explicit schemes in time coupled with a suitable method in space, which inherits the standard stability parabolic constraint. In this paper we combine the effectiveness of the relaxation systems with the computational efficiency and robustness of the implicit approximations, avoiding the need to resolve nonlinear problems and avoiding stability constraints on time step. In particular we consider an implicit scheme for the whole relaxation system except for the nonlinear source term, which is treated though a suitable linearization technique. We give some theoretical stability results in a particular case of linearization and we provide insight on the general case. Several numerical simulations confirm the theoretical results and give evidence of the stability and convergence also in the case of nonlinear degenerate diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号