首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we develop and analyze a new recovery‐based a posteriori error estimator for the discontinuous Galerkin (DG) method for nonlinear hyperbolic conservation laws on Cartesian grids, when the upwind flux is used. We prove, under some suitable initial and boundary discretizations, that the ‐norm of the solution is of order , when tensor product polynomials of degree at most are used. We further propose a very simple derivative recovery formula which gives a superconvergent approximation to the directional derivative. The order of convergence is showed to be . We use our derivative recovery result to develop a robust recovery‐type a posteriori error estimator for the directional derivative approximation which is based on an enhanced recovery technique. The proposed error estimators of the recovery‐type are easy to implement, computationally simple, asymptotically exact, and are useful in adaptive computations. Finally, we show that the proposed recovery‐type a posteriori error estimates, at a fixed time, converge to the true errors in the ‐norm under mesh refinement. The order of convergence is proved to be . Our theoretical results are valid for piecewise polynomials of degree and under the condition that each component, , of the flux function possesses a uniform positive lower bound. Several numerical examples are provided to support our theoretical results and to show the effectiveness of our recovery‐based a posteriori error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1224–1265, 2017  相似文献   

2.
We derive residual‐based a posteriori error estimates of finite element method for linear parabolic interface problems in a two‐dimensional convex polygonal domain. Both spatially discrete and fully discrete approximations are analyzed. While the space discretization uses finite element spaces that are allowed to change in time, the time discretization is based on the backward Euler approximation. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates and an appropriate adaptation of the elliptic reconstruction technique introduced by (Makridakis and Nochetto, SIAM J Numer Anal 4 (2003), 1585–1594). We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the ‐norm and almost optimal order in the ‐norm. The interfaces are assumed to be of arbitrary shape but are smooth for our purpose. Numerical results are presented to validate our derived estimators. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 570–598, 2017  相似文献   

3.
The Grünwald formula is used to solve the one‐dimensional distributed‐order differential equations. Two difference schemes are derived. It is proved that the schemes are unconditionally stable and convergent with the convergence orders and in maximum norm, respectively, where and are step sizes in time, space and distributed order. The extrapolation method is applied to improve the approximate accuracy to the orders and respectively. An illustrative numerical example is given to confirm the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 591–615, 2016  相似文献   

4.
In , , we compute the solution to both the unconstrained and constrained Gauss variational problem, considered for the Riesz kernel of order and a pair of compact, disjoint, boundaryless ‐dimensional ‐manifolds , , where , each being charged with Borel measures with the sign prescribed. Such variational problems over a cone of Borel measures can be formulated as minimization problems over the corresponding cone of surface distributions belonging to the Sobolev–Slobodetski space , where and (see Harbrecht et al., Math. Nachr. 287 (2014), 48–69). We thus approximate the sought density by piecewise constant boundary elements and apply the primal‐dual active set strategy to impose the desired inequality constraints. The boundary integral operator which is defined by the Riesz kernel under consideration is efficiently approximated by means of an ‐matrix approximation. This particularly enables the application of a preconditioner for the iterative solution of the first‐order optimality system. Numerical results in are given to demonstrate our approach. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1535–1552, 2016  相似文献   

5.
The semidiscrete and fully discrete weak Galerkin finite element schemes for the linear parabolic integro‐differential equations are proposed. Optimal order error estimates are established for the corresponding numerical approximations in both and norms. Numerical experiments illustrating the error behaviors are provided.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1357–1377, 2016  相似文献   

6.
The aim of this article is to present and analyze first‐order system least‐squares spectral method for the Stokes equations in two‐dimensional spaces. The Stokes equations are transformed into a first‐order system of equations by introducing vorticity as a new variable. The least‐squares functional is then defined by summing up the ‐ and ‐norms of the residual equations. The ‐norm in the least‐squares functional is replaced by suitable operator. Continuous and discrete homogeneous least‐squares functionals are shown to be equivalent to ‐norm of velocity and ‐norm of vorticity and pressure for spectral Galerkin and pseudospectral method. The spectral convergence of the proposed methods are given and the theory is validated by numerical experiment. Mass conservation is also briefly investigated. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 661–680, 2016  相似文献   

7.
We present a fourth‐order Hermitian box‐scheme (HB‐scheme) for the Poisson problem in a cube. A single‐nonstaggered regular grid is used supporting the discrete unknowns u and . The scheme is fourth‐order accurate for u and in norm. The fast numerical resolution uses a matrix capacitance method, resulting in a computational complexity of . Numerical results are reported on several examples including nonseparable problems. The present scheme is the extension to the three‐dimensional case of the HB‐scheme presented in Abbas and Croisille [J Sci Comp 49 (2011), 239–267]. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 609–629, 2015  相似文献   

8.
To improve the convergence rate in L2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson‐Nernst‐Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time‐dependent ionic concentrations equations. Optimal error estimates in norm for the electrostatic potential, and in and norms for the ionic concentrations are attained. As a by‐product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1924–1948, 2017  相似文献   

9.
In this article, we analyze a residual‐based a posteriori error estimates of the spatial errors for the semidiscrete local discontinuous Galerkin (LDG) method applied to the one‐dimensional second‐order wave equation. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We apply the optimal L2 error estimates and the superconvergence results of Part I of this work [Baccouch, Numer Methods Partial Differential Equations 30 (2014), 862–901] to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivative, at a fixed time, converge to the true spatial errors in the L2‐norm under mesh refinement. The order of convergence is proved to be , when p‐degree piecewise polynomials with are used. As a consequence, we prove that the LDG method combined with the a posteriori error estimation procedure yields both accurate error estimates and superconvergent solutions. Our computational results show higher convergence rate. We further prove that the global effectivity indices, for both the solution and its derivative, in the L2‐norm converge to unity at rate while numerically they exhibit and rates, respectively. Numerical experiments are shown to validate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1461–1491, 2015  相似文献   

10.
In this article, a fast‐iterative method and a fast‐direct method is proposed for solving one‐dimensional and two‐dimensional tempered fractional diffusion equations with constant coefficients. The proposed iterative method is accelerated by circulant preconditioning which is shown to converge superlinearly while the proposed direct method is based on circulant and skew‐circulant representation for Toeplitz matrix inversion. In one‐dimensional case, the operation cost of the proposed methods are both shown to be with memory requirement in each time step, where is the number of spatial nodes. With the alternating direction implicit method, it is proven that the proposed fast solution algorithms can be extended to handle two‐dimensional tempered fractional diffusion equations with operation cost and memory requirement in each time step, where the number of spatial nodes in ‐direction and ‐direction both equal to . Numerical examples are provided to illustrate the effectiveness and efficiency of the proposed methods.  相似文献   

11.
The solutions of elliptic problems with a Dirac measure right‐hand side are not in dimension and therefore the convergence of the finite element solutions is suboptimal in the ‐norm. In this article, we address the numerical analysis of the finite element method for the Laplace equation with Dirac source term: we consider, in dimension 3, the Dirac measure along a curve and, in dimension 2, the punctual Dirac measure. The study of this problem is motivated by the use of the Dirac measure as a reduced model in physical problems, for which high accuracy of the finite element method at the singularity is not required. We show a quasioptimal convergence in the ‐norm, for on subdomains which exclude the singularity; in the particular case of Lagrange finite elements, an optimal convergence in ‐norm is shown on a family of quasiuniform meshes. Our results are obtained using local Nitsche and Schatz‐type error estimates, a weak version of Aubin‐Nitsche duality lemma and a discrete inf‐sup condition. These theoretical results are confirmed by numerical illustrations.  相似文献   

12.
We consider a fully practical finite element approximation of the nonlinear parabolic Cahn–Hilliard system subject to an initial condition on the conserved order parameter , and mixed boundary conditions. Here, is the interfacial parameter, is the field strength parameter, is the obstacle potential, is the diffusion coefficient, and denotes differentiation with respect to the second argument. Furthermore, w is the chemical potential and is the electrostatic potential. The system, in the context of nanostructure patterning, has been proposed to model the manipulation of morphologies in organic solar cells with the help of an applied electric field. In the limit , it reduces to a sharp interface problem that models the evolution of an unstable interface between two dielectric media in the presence of a quasistatic electric field. On introducing a finite element approximation for the above Cahn–Hilliard system, we prove existence and stability of a discrete solution. Moreover, in the case of two space dimensions, we are able to prove convergence and hence existence of a solution to the considered system of partial differential equations. We demonstrate the practicality of our finite element approximation with several numerical simulations in two and three space dimensions. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1890–1924, 2015  相似文献   

13.
In this article, we develop several first order fully discrete Galerkin finite element schemes for the Oldroyd model and establish the corresponding stability results for these numerical schemes with smooth and nonsmooth initial data. The stable mixed finite element method is used to the spatial discretization, and the temporal treatments of the spatial discrete Oldroyd model include the first order implicit, semi‐implicit, implicit/explicit, and explicit schemes. The ‐stability results of the different numerical schemes are provided, where the first‐order implicit and semi‐implicit schemes are the ‐unconditional stable, the implicit/explicit scheme is the ‐almost unconditional stable, and the first order explicit scheme is the ‐conditional stable. Finally, some numerical investigations of the ‐stability results of the considered numerical schemes for the Oldroyd model are provided to verify the established theoretical findings.  相似文献   

14.
An efficient H1‐Galerkin mixed finite element method (MFEM) is presented with and zero order Raviart‐Thomas elements for the nonlinear Sobolev equations. On one hand, the existence and uniqueness of the solutions of the semidiscrete approximation scheme are proved and the super close results of order for the original variable u in a broken H1 norm and the auxiliary variable in norm are deduced without the boundedness of the numerical solution in ‐norm. Conversely, a linearized Crank‐Nicolson fully discrete scheme with the unconditional super close property is also developed through a new approach, while previous literature always require certain time step conditions (see the references below). Finally, a numerical experiment is included to illustrate the feasibility of the proposed method. Here h is the subdivision parameter and τ is the time step.  相似文献   

15.
A new nonconforming rectangle element with cubic convergence for the energy norm is introduced. The degrees of freedom (DOFs) are defined by the 12 values at the three Gauss points on each of the four edges. Due to the existence of one linear relation among the above DOFs, it turns out the DOFs are 11. The nonconforming element consists of . We count the corresponding dimension for Dirichlet and Neumann boundary value problems of second‐order elliptic problems. We also present the optimal error estimates in both broken energy and norms. Finally, numerical examples match our theoretical results very well. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 691–705, 2015  相似文献   

16.
In this article, a Fourier pseudospectral method, which preserves the conforal conservation la, is proposed for solving the damped nonlinear Schrödinger equation. Based on the energy method and the semi‐norm equivalence between the Fourier pseudospectral method and the finite difference method, a priori estimate for the new method is established, which shows that the proposed method is unconditionally convergent with order of in the discrete ‐norm, where is the time step and is the number of collocation points used in the spectral method. Some numerical results are addressed to confirm our theoretical analysis.  相似文献   

17.
In this article, a time discretization decoupled scheme for two‐dimensional magnetohydrodynamics equations is proposed. The almost unconditional stability and convergence of this scheme are provided. The optimal error estimates for velocity and magnet are provided, and the optimal error estimate for pressure are deduced as well. Finite element spatial discretization and numerical implementation are considered in our article (Zhang and He, Comput Math Appl 69 (2015), 1390–1406). © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 956–973, 2017  相似文献   

18.
We consider a mixed finite‐volume finite‐element method applied to the Navier–Stokes system of equations describing the motion of a compressible, barotropic, viscous fluid. We show convergence as well as error estimates for the family of numerical solutions on condition that: (a) the underlying physical domain as well as the data are smooth; (b) the time step and the parameter of the spatial discretization are proportional, ; and (c) the family of numerical densities remains bounded for . No a priori smoothness is required for the limit (exact) solution. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1208–1223, 2017  相似文献   

19.
In this article, stabilization result for the Benjamin‐Bona‐Mahony‐Burgers' (BBM‐B) equation, that is, convergence of unsteady solution to steady state solution is established under the assumption that a linearized steady state eigenvalue problem has a minimal positive eigenvalue. Based on appropriate conditions on the forcing function, exponential decay estimates in , and ‐norms are derived, which are valid uniformly with respect to the coefficient of dispersion as it tends to zero. It is, further, observed that the decay rate for the BBM‐B equation is smaller than that of the decay rate for the Burgers equation. Then, a semidiscrete Galerkin method for spatial direction keeping time variable continuous is considered and stabilization results are discussed for the semidiscrete problem. Moreover, optimal error estimates in ‐norms preserving exponential decay property are established using the steady state error estimates. For a complete discrete scheme, a backward Euler method is applied for the time discretization and stabilization results are again proved for the fully discrete problem. Subsequently, numerical experiments are conducted, which verify our theoretical results. The article is finally concluded with a brief discussion on an extension to a multidimensional nonlinear Sobolev equation with Burgers' type nonlinearity.  相似文献   

20.
In this paper, the author derives an ‐superconvergence for the piecewise linear Ritz‐Galerkin finite element approximations for the second‐order elliptic equation equipped with Dirichlet boundary conditions. This superconvergence error estimate is established between the finite element solution and the usual Lagrange nodal point interpolation of the exact solution, and thus the superconvergence at the nodal points of each element. The result is based on a condition for the finite element partition characterized by the coefficient tensor and the usual shape functions on each element, called ‐equilateral assumption in this paper. Several examples are presented for the coefficient tensor and finite element triangulations which satisfy the conditions necessary for superconvergence. Some numerical experiments are conducted to confirm this new theory of superconvergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号