首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of CH2I with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PESs) by the UB3LYP method. The energetic information is further refined at the UCCSD(T) and UQCISD(T) levels of theory. Our results indicated that the title reaction is more favorable on the singlet PES thermodynamically, and less competitive on the triplet one. On the singlet PES, the title reaction is most likely to be initiated by the carbon-to-oxygen approach forming the adduct IM1 (H2ICONO-trans) without any transition state, which can isomerizes to IM2 (H2ICNO2) and IM3 (H2ICONO-cis), respectively. The most feasible pathway is the 1, 3-I shift with C–I and O–N bonds cleavage along with the N–I bond formation of IM1 lead to the product P1 (CH2O + INO), which can further dissociate to give P3 (CH2O + I + NO). The competitive pathway is 1, 3-H shift associated with O–N bond rupture of IM1 to form P2 (CHIO + HNO). The theoretically obtained major product CH2O and adducts IM1 and IM2 are in good agreement with the kinetic detection in experiment. The similarities and discrepancies between CH2I + NO2 and CH2Br + NO2 reactions are discussed in terms of the electronegativity of halogen atom and the barrier height of the rate-determining process. The present study may be helpful for further experimental investigation of the title reaction.  相似文献   

2.
The mechanisms of CH2SH with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PES) at the BMC-CCSD//B3LYP/6-311 + G(d,p) level. The result shows that the title reaction is more favourable on the singlet PES thermodynamically, and it is less competitive on the triplet PES. On the singlet PES, the initial addition of CH2SH with NO2 leads to HSCH2NO2 (IM2) without any transition state, followed by a concerted step involving C–N fission and shift of H atom from S to O giving out CH2S + trans-HONO, which is the major products of the title reaction. With higher barrier height, the minor products are CH2S + HNO2, formed by a similar concerted step from the initial adduct HSCH2ONO (IM1). The direct abstraction route of H atom in SH group abstracted by O atom might be of some importance. It starts from the addition of the reactants to form a weak interaction molecular complex (MC3), subsequently, surmounts a low barrier height leading to another complex (MC2), which gives out CH2S + trans-HONO finally. Other direct hydrogen abstraction channels could be negligible with higher barrier heights and less stable products.  相似文献   

3.
The complex potential energy surface of the H + CH2=CHCN reaction has been investigated at the BMC-CCSD level based on the geometric parameters optimized at the BHandHLYP/6-311++G(d,p) level. This reaction is revealed to be one of the significant loss processes of acrylonitrile. The BHandHLYP and M05-2X methods are employed to obtain initial geometries. The reaction mechanism confirms that H can attack on the C=C double bond or C and N atom of –CN group to form the chemically activated adducts IM1 (CH3CHCN), IM2 (CH2CH2CN), IM3′ (CH2=CHCHN) and IM5 (CH2=CHCNH), and direct H-abstraction paths may also occur. Temperature- and pressure-dependent rate constants have been carried out using Rice–Ramsperger–Kassel–Marcus theory with tunneling correction. IM1 (CH3CHCN) formed by collisional stabilization is the major product at the 760 Torr pressure of H2 and in the temperature range (200–1,600 K); whereas the production of IM2 (CH2CH2CN) is the main channel at 1,600–3,000 K. The calculated rate constants are in good agreement with the experimental data.  相似文献   

4.
Using the CCSD(T)/cc-pVDZ//B3LYP/6-311G(2d,2p) method, we calculated the detailed potential energy surfaces (PESs) for the unimolecular isomerization and decomposition of methyl peroxynitrate (CH3O2NO2). The results show that there are the two most stable isomers, IS1a and IS1b, which are a pair of mirror image isomers. From IS1a and IS1b, different isomerization and unimolecular decomposition reaction channels have been studied and discussed. Among them, the predominant thermal decomposition pathways are those leading to CH3O2 + NO2 and cis-CH3ONO + O2. The former is the lowest-energy path through the direct O–N bond rupture in IS1a or IS1b. The PES along the O–N bond in IS1a has been scanned, where the energy of IS1a reaches maximum value of 23.5 kcal/mol when the O–N bond is stretched to about 2.8 Å. This energy is 2.7 kcal/mol larger than the O–N bond dissociation energy (BDE) and 2.8 kcal/mol larger than the experimental active energy. In addition, because the energy barriers of IS1a isomerization to IS2a are 23.8 kcal/mol, close to the 20.8 kcal/mol O–N BDE in IS1a or IS1b, the isomerization reaction may compete with the direct bond rupture dissociation reaction.  相似文献   

5.
The details of reaction mechanism of imidogen (NH) and hydroxyl radicals are explored at the UMP2(FC)/cc–pVDZ and PMP4(FC,SDTQ)/cc–pVQZ//UMP2 + ZPE levels, theoretically. The initial association between NH and OH radicals leads to the formation of the intermediates, NH…OH, HN…HO, cis HNOH, and trans HNOH, through the barrierless and exothermic processes. By starting from the initial intermediates, all possible paths for the formation of H + HNO, H2 + NO, H2O + 4N, H2N + 3O, and H + 3HON products are investigated on potential energy surface. The results reveal that H2O + 4N is the main product involved in the mechanism of hydrogen atom abstraction of NH by OH radical through the intermediate NH…OH.  相似文献   

6.
The potential energy surface for the reaction of OH with CH2═CHCH2I has been studied at the CCSD(T)//M06-2X/6-311++G(d,p) level of theory. Three different reaction entrances were revealed, namely, terminal-C addition, central-C addition, and H-abstraction, leading to CH2OHCHCH2I (IM1), CH2CHOHCH2I (IM2), and H2O?+?C3H4I, respectively. Several conceivable decomposition and isomerization channels were also examined for IM1 and IM2. The total and individual rate constants were calculated by using multichannel RRKM and TST theories over a wide range of temperatures (200–3000 K) and pressures(10?14–1014 Torr).  相似文献   

7.
The mechanism of the gas-phase reaction OH with CH2=C(CH3)CH2OH (2-methyl-2-propen-1-ol) has been elucidated using high-level ab initio method, i.e., CCSD(T)/6-311++g(d,p)//MP2(full)/6-311++g(d,p). Various possible H-abstraction and addition–elimination pathways are identified. The calculations indicate that the addition–elimination mechanism dominates the OH+MPO221 reaction. The addition reactions between OH radicals and CH2=C(CH3)CH2OH begin with the barrierless formation of a pre-reactive complex in the entrance channel, and subsequently the CH2(OH)C(CH3)CH2OH (IM1) and the CH2C(OH)(CH3)CH2OH (IM2) are formed by OH radicals’ electrophilic additions to the double bond. IM1 can easily rearrange to IM2 via a 1,2-OH migration. Subsequently, rearrangement of IM2 to form (CH3)2C(OH)CH2O (IM11) followed by dissociation to HCHO + (CH3)2COH (P21) is the most favorable pathway. The decomposition of IM2 to CH2OH + CH2=C(OH)CH3 (P16) is the secondary pathway. The other pathways are not expected to play any important role in forming final products.  相似文献   

8.
The mechanisms for the CH2SH + NO reaction were investigated on both of the singlet and triplet PES at the BMC-CCSD//B3LYP/6-311+G(d,p) level. The results indicate that the singlet PES is much lower than the triplet PES energetically; therefore, the reaction occurs on the singlet PES dominantly. The most favorable channel on the singlet PES takes place by a barrierless addition of N atom to CH2SH radical to form HSCH2NO. Subsequently, the rearrangement of the initial adduct HSCH2NO (IM1) to form another intermediate IM3 via a four-center transition state, followed by the C–O bond fission in IM3 leading to the major product CH2S + HNO. Due to high barriers, other product including HC(N)SH + HO, HON + CH2S, and HNO + CHSH could be negligible. The direct abstraction channel was also determined to yield CH2S + HON. With high barrier (33.3 kcal/mol), it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. While on the triplet PES, with the lowest barrier height (18.8 kcal/mol), the direct N-abstracted channel to form CH2S + HNO is dominant. However, it is not competitive with the channels on the singlet PES. Our results are in good accordance with experimental conclusions that the reaction proceeds via addition mechanism.  相似文献   

9.
The conformational properties of methanesulfonyl peroxynitrate, CH3S(O)2OONO2 (MSPN), and its radical decomposition products CH3S(O)2OO· and CH3S(O)2O· were studied by ab initio and density functional methods. The dihedral angle around the S–O and the O–O single bond are calculated to be ?70.5° and ?97.8° (B3LYP/6‐311++G(3df,3pd)), respectively. The principal unimolecular dissociation pathways for MSPN were studied using complete basis set (CBS) methods. The reaction enthalpies for the channels CH3S(O)2OONO2→ CH3S(O)2OO·+NO2 and CH3S(O)2OONO2→CH3S(O)2O·+NO3 were computed to be 111.0 and 140.9 kJ/mol, respectively. The enthalpies of formation at 298 K for MSPN and CH3S(O)2OO radical were predicted to be ?358.2 and ?281.3 kJ/mol, respectively.  相似文献   

10.
The potential energy surface of O(1D) + CH3CH2Br reaction has been studied using QCISD(T)/6‐311++G(d,p)//MP2/6‐311G(d,p) method. The calculations reveal an insertion‐elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) inserting into C? Br bond of CH3CH2Br producing one energy‐rich intermediate CH3CH2OBr and another is the O(1D) inserting into one of the C? H bonds of CH3CH2Br producing two energy‐rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25, and 30 kcal/mol. CH3CH2O + Br are the main decomposition products of CH3CH2OBr. CH3COH + HBr and CH2CHOH + HBr are the main decomposition products for IM1; CH2CHOH + HBr are the main decomposition products for IM2. As IM1 is more stable and more likely to form than CH3CH2OBr and IM2, CH3COH + HBr and CH2CHOH + HBr are probably the main products of the O(1D) + CH3CH2Br reaction. Our computational results can give insight into reaction mechanism and provide probable explanations for future experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The thermal decomposition of nitropropane (CH3CH2CH2NO2) has been investigated at the CBS-QB3 level of theory. The pyrolysis of CH3CH2CH2NO2 mainly includes the simple bond ruptures mechanism, hydrogen abstraction processes, isomerization and secondary reactions. As a result, for the simple bond ruptures mechanism, the formation of \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) products is dominant with the energy barrier of 49.77 kcal mol?1. The process of H atom on the β–CH2 abstracted by one O atom of NO2 moiety in CH3CH2CH2NO2(CH3CH2CH2NO2 → CH3CH=CH2 + HONO) needs to overcome lower energy barrier than that of the rate-determining step (one of H atom on the α-CH2 and γ-CH3 abstracted of reaction) of the other hydrogen abstraction reactions. Therefore, we predict that the corresponding alkenes and HONO are the main products in the hydrogen abstraction reaction of nitroparaffin. Besides, the channel of the CH3CH2CHO + HNO formations (CH3CH2C(α)H2NO2 → CH3CH2C(α)H2ONO → CH3CH2CHO + HNO), occurring through the H atom of C(α) abstracted by the N atom of NO2 moiety after the isomerization reaction from CH3CH2CH2NO2 to CH3CH2CH2ONO, is favorable in the isomerization secondary reactions. Rate constants and branching ratios are estimated by means of the conventional transition state theory with zero curvature tunneling over the temperature range of 400–1500 K. The calculation shows that the overall rate constant in the temperature of 400–1500 K is mainly dependent on the competitive channels of formations of CH3CH=CH2 + HONO and \({\text{CH}}_{3} {\text{CH}}_{2} {\text{CH}}_{2}^{\cdot} +\,^{\cdot}{\text{NO}}_{2}\) The three-parameter expression for the total rate constant is fitted to be k total = 1.74 × 10?13 T 8.20exp(17038.7/T) (s?1) between 400 and 1500 K.  相似文献   

12.
The title complexes, trans‐di­aqua­bis­(quinoline‐2‐carboxyl­ato‐κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans‐di­aqua­bis­(quinoline‐2‐car­box­yl­ato‐κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline‐2‐carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.  相似文献   

13.
The structure of the title compound, C16H40N4P+·Br?·0.5H2O or [P{N(C2H5)2}4]Br·0.5H2O, at 130 K has Z′ = 4 and is ionic, with Br not bonded to P. The P atoms are tetrahedral, with P—N distances in the range 1.628 (2)–1.6400 (19) Å. The N atoms are approximately planar. The water mol­ecules form cyclic hydrogen‐bonded [(H2O)2Br2]2? units about inversion centers, with O?Br distances in the range 3.425 (2)–3.611 (3) Å.  相似文献   

14.
The kinetics of oxidation of a series of substituted 4-oxobutanoic acids (Y–C6H4COCH2CH2COOH: Y = H, OCH3, CH3, C6H5, Cl, Br or NO2) by N-bromophthalimide have been studied in aqueous acetic acid medium at 30 °C. The total reaction is second-order, first-order each in oxidant and substrate. The oxidation rate increases linearly with [H+], establishing the hypobromous acidium ion, H2O+Br, as the reactive species. A variation in ionic strength has no effect on the reaction rate. The order of reactivity among the studied 4-oxoacids is: 4-methoxy > 4-methyl > 4-phenyl > 4-H > 4-Cl > 4-Br > 3-NO2. The effect of changes on the electronic nature of the substrate reveals that there is a development of positive charge in the transition state. The activation parameters have been computed from Arrhenius and Eyring plots. Based on the kinetic results, a suitable mechanism has been proposed.  相似文献   

15.
The concentration range of transference number measurements with the Hittorf cell has been extended up to a total concentration of c T = 3.4 mol·dm?3 for the H2O + NaCl + MgCl2 ternary system at (298.15 ± 0.05) °C. This was achieved with a redesigned Hittorf cell, by dividing each of the anodic/cathodic compartments into two subcompartments: one with a low concentration of H2O + NaCl for the electrode reaction and another one in contact with the middle compartment with the ternary solution to be measured. Measurements of the transference numbers were also made for the corresponding H2O + NaCl and H2O + MgCl2 binary systems. The experimental details and the results are described.  相似文献   

16.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

17.
A multicomponent pharmaceutical salt formed by the isoquinoline alkaloid berberine (5,6‐dihydro‐9,10‐dimethoxybenzo[g]‐1,3‐benzodioxolo[5,6‐a]quinolizinium, BBR) and the nonsteroidal anti‐inflammatory drug diclofenac {2‐[2‐(2,6‐dichloroanilino)phenyl]acetic acid, DIC} was discovered. Five solvates of the pharmaceutical salt form were obtained by solid‐form screening. These five multicomponent solvates are the dihydrate (BBR–DIC·2H2O or C20H18NO4+·C14H10Cl2NO2?·2H2O), the dichloromethane hemisolvate dihydrate (BBR–DIC·0.5CH2Cl2·2H2O or C20H18NO4+·C14H10Cl2NO2?·0.5CH2Cl2·2H2O), the ethanol monosolvate (BBR–DIC·C2H5OH or C20H18NO4+·C14H10Cl2NO2?·C2H5OH), the methanol monosolvate (BBR–DIC·CH3OH or C20H18NO4+·C14H10Cl2NO2?·CH3OH) and the methanol disolvate (BBR–DIC·2CH3OH or C20H18NO4+·C14H10Cl2NO2?·2CH3OH), and their crystal structures were determined. All five solvates of BBR–DIC (1:1 molar ratio) were crystallized from different organic solvents. Solvent molecules in a pharmaceutical salt are essential components for the formation of crystalline structures and stabilization of the crystal lattices. These solvates have strong intermolecular O…H hydrogen bonds between the DIC anions and solvent molecules. The intermolecular hydrogen‐bond interactions were visualized by two‐dimensional fingerprint plots. All the multicomponent solvates contained intramolecular N—H…O hydrogen bonds. Various π–π interactions dominate the packing structures of the solvates.  相似文献   

18.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

19.
The reaction mechanism of C2H2 and N2O on the singlet potential energy surface is investigated in this study, at the B3LYP/6-311++G(3df,3pd), MP2/6-311++G(d,p), and CCSD(T) levels of theory. We have obtained three kinds of products in both methods, B3LYP and MP2, which have enough thermodynamic stability. The results reveal that the product P1, CH2CO + N2, is spontaneous and exothermic with ?86.176 and ?83.149 kcal/mol in Gibbs free energy and enthalpy of reaction at the MP2 level, respectively. Hence, the product P1 is thermodynamically the most favored adduct of the C2H2 + N2O gas phase reaction at atmospheric pressure and 298.15 K temperature.  相似文献   

20.
Methane is one of the promising alternatives of petroleum, which should be used for not only a fuel but also a resource for hydrogen and more useful chemicals as with the petroleum. However, the selective methane conversion to them is still difficult in contrast to the combustion. Three types of photocatalytic reactions for methane conversion, i.e., the photocatalytic non-oxidative coupling of methane (2CH4 → C2H6 + H2), the photocatalytic dry reforming of methane (CH4 + CO2 → 2CO + 2H2) and the photocatalytic steam reforming of methane (CH4 + 2H2O → 4H2 + CO2), can take place around room temperature or at a mild condition such as 473 K using photoenergy and semiconductor photocatalyst. In the present short review, the details of each photocatalytic reaction and the design concept of the semiconductor photocatalysts for each photocatalytic methane conversion were summarized and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号