首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Intelligent polymers exhibit sharp, reversible phase changes in response to small changes in environmental conditions. For example, a small temperature change can cause a sharp precipitation or gelation of a smart polymer solution. Conjugation of these unusual polymers to biomolecules such as enzymes, ligands, lipids, and drugs can lead to many new and exciting applications in medicine and biotechnology. (1–4) This presentation reviews the principles, methodolgies and applications of these “smart” polymer-biomolecule systems, with special focus on temperature-sensitive polymer-protein conjugates.  相似文献   

2.
Over the past 20 years we have been deeply involved with the synthesis and applications of stimuli-responsive polymer systems, especially polymer-biomolecule conjugates. The work of Toyoichi Tanaka has been a constant inspiration for our work and this article is dedicated to him. This article summarizes the research that we have carried out along with many collaborators on polymer-protein conjugates. We include conjugates prepared by random polymer conjugation to lysine amino groups, and also those prepared by site-specific conjugation of the polymer to specific amino acid sites that are genetically-engineered into the known amino acid sequence of the protein. We describe the preparation and properties of thermally-sensitive, random conjugates to enzymes and several affinity recognition proteins. We have also prepared site-specific conjugates to streptavidin. with temperature-sensitive polymers, pH-sensitive polymers, and light-sensitive polymers. The preparation of these conjugates and their many fascinating applications are reviewed in this article.  相似文献   

3.
A facile route to well-defined "smart" polymer-protein conjugates with tunable bioactivity is reported. Protein modification with a reversible addition-fragmentation chain transfer (RAFT) agent and subsequent room temperature polymerization in aqueous media led to conjugates of poly(N-isopropylacrylamide) and a model protein. Representing the first example of polymer-protein conjugation with RAFT agent immobilization via the "R-group" approach, high molecular weight and reductively stable conjugates were accessible without extensive purification or adverse effects on the protein structure. An increase in molecular weight with conversion was observed for the chains grafted from the protein surface, confirming the controlled nature of the polymerization. The responsive behavior of the immobilized polymer facilitated conjugate isolation and also allowed environmental modulation of bioactivity.  相似文献   

4.
5.
Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer-drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for the targeted and controlled delivery of drugs, and polymeric sequestrants take advantage of their lack of solubility for the sequestration of target molecules in vivo. In more recent studies reviewed in greater detail here, the properties of polymers that distinguish them from small-molecule drugs, such as their high molecular weight and their ability to display multiple pendant moieties, have been specifically exploited for activating cellular targets or inhibiting the binding of pathogens. The elucidation of relevant structure-function relationships in investigations of this kind has relied on the combination of living polymerization methods with chemical conjugation methods, and protein engineering methods have shown increasing potential in the manipulation of architectural features of such polymer therapeutics. Garnering a detailed understanding of the various mechanisms by which multivalent polymers engage biological targets is certain to expand the role of polymers as therapeutics, by enabling highly specific activities of designed polymers in the biological environment.  相似文献   

6.
The use of nanotechnology in drug-delivery systems (DDS) is attractive for advanced diagnosis and treatment of cancer diseases. Biodegradable polymeric nanoparticles, for example, have promising applications as advanced drug carriers in cancer treatment. In this review, we discuss the development of drug-delivery systems based on an amphiphilic principle mainly conducted by our group for anti-cancer drug delivery. We first briefly address the synthetic chemistry for amphiphilic biodegradable polymers. In the second part, we summarize progress in the application of self-assembled polymer micelles using amphiphilic biodegradable copolymers as anti-tumor drug carriers.  相似文献   

7.
The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal complexes, which are widelyused for solving many practical tasks. The nanosecond dynamics of macromolecules are ahighly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solvethe problems of studying IPC formation and stability and to investigate the interpolymerreactions of exchange and substitution. The investigation of changes in the rotational mo-bility of globular protein molecules as a whole makes it possible to determine the complexcomposition and its stability, and to control the course of polymer-protein conjugate forma-tion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determin-ing the equilibrium constants of the S-polymer complex formation was developed on thebasis of the study of polymer chains mobility. It is established that nanosecond dynamicsinfluences the course of chemical reactions in polymer chains. Moreover, the marked effectof the nanosecond dynamics is also revealed in the study of photophysical processes (theformation of excimers and energy migration of electron excitation) in polymers with pho-toactive groups. It was found that the efficiency of both processes increases with increasingthe mobility of side chains, the carriers of photoactive groups.  相似文献   

8.
Adsorption of a model protein to a surface with end-grafted polymers was studied by Monte Carlo simulations. In the model the effect on protein adsorption in the presence of end-grafted polymers was evaluated by calculating the change in free energy between an end-grafted surface and a surface without polymers. The change in free energy was calculated using statistical mechanical perturbation theory. Apart from ordinary athermal polymer-polymer and protein-polymer interactions we also study a broad selection of systems by varying the interaction between proteins and polymers and effective polymer-solvent interactions. The interactions between the molecules span an interval from -0.5 to +0.5 kT. Consequently, general features of protein adsorption to end-grafted surfaces is investigated by systematically changing properties like hydrophilicity/hydrophobicity of the polymer, protein and surface as well as grafting density, degree of polymerization and protein size. Increasing grafting density as well as degree of polymerization decreases the adsorption of protein except in systems with attractive polymer-protein interactions, where adsorption increases with increasing chain length and higher grafting density. At a critical polymer-protein interaction neither chain length nor grafting density affects the free energy of adsorption. Hydrophilic polymers were found to prevent adsorption better than hydrophobic polymers. Very small particles with radii comparable to the size of a polymer segment were, however, better excluded from the surface when using hydrophobic than hydrophilic polymers. For systems with attractive polymer-protein interaction not only the volume of the protein was shown to be of importance but also the size of the exposed surface.  相似文献   

9.
The interaction of metal sulfonate ionomers with polymers containing low levels of amines has been investigated in solution. For example, zinc sulfo EPDM and a styrene/vinyl pyridine copolymer form such complexes over broad concentration ranges. The resultant solutions offer enhanced viscosities at dilute polymer concentrations. At high polymer levels solutions based on these complexes are lower in viscosity than the ionomer alone. These interpolymer complexes have been shown to exhibit an improved property/rheology balance in bulk systems. In solution, polymer complexes provide control of hydrocarbon solution viscosity not available with conventional polymers. Reduced viscosity-concentration studies suggest that these polymer complexes are a result of the amine-containing polymer interacting with intramolecular-associated ionomer coils, which at higher concentrations form a pseudonetwork.  相似文献   

10.
Understanding of the association of phagocytosis of polymers with signaling of innate immunity of macrophages is the major purpose of this study. Polymer conjugates have been utilized for clinical therapy of cancer and infections, such as Mycobacterium tuberculosis, as effective vectors of drug-delivery systems. They are incorporated through phagocytosis into macrophages and activate innate immunity signaling, which plays a crucial role in its therapeutic and side effects. Macrophage phagocytosis of polystyrene latex microspheres was examined and assayed by treatment of macrophages with the cholesterol depletor methyl-β-cyclodextrin (MβCD) or the sphingolipid depletor n-octyl-β-D-glucopyranoside (OGP). Expressions of various mRNAs during phagocytosis were quantified by real-time PCR. Phagocytosis of polystyrene latex microspheres by various macrophages, such as murine monocyte-derived macrophage J774, rat alveolar macrophage NR8383, and murine Kupffer cell KC13-2, was suppressed by treatment with MβCD or OGP in a concentration-dependent manner. The expression of mRNAs of TNFα, IL-1β, IL-6 and CXCL10 genes induced by lipopolysaccharide (LPS) was not suppressed by treatment with MβCD in J774 cells. Moreover, genes that were induced by LPS were up-regulated even in the absence of LPS by the phagocytosis of polymer conjugates, but such up-regulations were not suppressed by the treatment with MβCD. It was shown that lipid rafts play a significant role in incorporation of polymer conjugates through phagocytosis of macrophages, but their association with signal transduction in innate immunity is very limited.  相似文献   

11.
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf‐PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and defined with state‐of‐the‐art characterization techniques—for example real‐time 1H NMR spectroscopy monitoring of the EO polymerization kinetics—this emerging class of polymers embodies a powerful platform for bio‐ and drug conjugation.  相似文献   

12.
苏晶  张玲  伍青 《化学进展》2008,20(12):1980-1986
树状聚合物及其功能化是近年来高分子科学界的研究热点之一。本文综述了不同类型的树状聚合物,分别有聚酯、聚丙三醇、聚乙烯亚胺等超支化聚合物,聚酰胺-胺、聚丙烯亚胺等树枝状聚合物。通过对树状聚合物末端大量官能团的亲水(亲油)改性可以制备两亲性树状聚合物,改性方法主要有酰胺化反应、酯化反应、麦克尔加成反应等。与通过缩聚反应所得到的上述树状聚合物不同,近年来配位聚合领域出现的通过“链行走”机理形成的树状聚乙烯,引起了高度关注,这方面着重介绍了乙烯与极性单体直接共聚合或者采用链行走与原子转移自由基聚合联用制备两亲性树状乙烯聚合物。最后对两亲性树状聚合物领域的发展前景进行了展望。  相似文献   

13.
A versatile method is described to engineer precisely defined protein/peptide–polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin‐like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme‐mediated ligation; and 3) attachment of a polymer by a click reaction with near‐quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water‐soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide–polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide–polymer conjugates for therapeutic use and other applications.  相似文献   

14.
The synthesis of starlike polymers based on calix[4]arene with amphiphilic nonionogenic arms is described. For the polymer containing residues of ω-cetyl oligo(ethylene oxide) as arms, the complexing ability with respect to alkaline-metal ions and tetraphenylporphyrin is studied. It is shown that the conformation of the calixarene ring is a factor determining the efficiency of guest binding. In the case of a partially conical conformation of the macrocycle, the polymer forms stable (with a binding constant of 106) water-soluble complexes with porphyrin molecules. This phenomenon may be used to create drug-delivery systems in the photodynamic therapy of oncological diseases.  相似文献   

15.
Abstract

Modecular transport of drugs through carier polymeric materds has been an active area of research. A number of soluble polymers have been used to deliver the drugs selectively to specific parts of the body. The literature in this area of research is extensive and diverse. An effort has been made to review the transport of drug molecules through physiological systems via polymeric materials. A brief introduction to the fundamentals and concepts which are frequently used in the drug-delivery area are covered in the following sections. Various aspects of the problems related to polymer-drug complexes, carrier molecules, and their degradability have been discussed. Both natural and synthetic biopolymers have been included in the discussion. Only representative references during the period 1977–1989 have been used in the discussion of results, and thus the reader is advised to look further into the original literature for greater information.  相似文献   

16.
将蛋白质或多肽连接到高分子链上,能够改善蛋白质/多肽的稳定性、生物相溶性和溶解性而赋予其优异的应用性能,所得聚合物-蛋白质/多肽生物结合物已经被广泛应用于药物载体、生物材料、纳米材料等领域。本文介绍借助"活性"/可控自由基聚合反应制备新型功能高分子材料的原理与方法,以及其合成聚合物-蛋白质/多肽生物结合物的国内外研究进展。  相似文献   

17.
The possibility of using luminescence spectroscopy to study even the early stages of the amorphization of active pharmaceutical ingredients (APIs) during their co-grinding with different polymers has been demonstrated using indomethacin as an example. Amorphization of an API is observed only on co-grinding with those polymers that have functional groups capable of interacting with the API to form supramolecular complexes. It is the formation of supramolecular complexes due to the chemical affinity between them, rather than local heating caused by plastic deformation of an API or of a polymer, that is responsible for the amorphization of the API on co-grinding with selected polymers. It has also been shown that luminescence spectroscopy can be a sensitive method of monitoring the crystallization of the amorphous phase of APIs during storage of API mechanocomposites with polymers depending on temperature and relative humidity.  相似文献   

18.
In the few last years, nanosystems have emerged as a potential therapeutic approach to improve the efficacy and selectivity of many drugs. Cyclodextrins (CyDs) and their nanoparticles have been widely investigated as drug delivery systems. The covalent functionalization of CyD polymer nanoparticles with targeting molecules can improve the therapeutic potential of this family of nanosystems. In this study, we investigated cross-linked γ- and β-cyclodextrin polymers as carriers for doxorubicin (ox) and oxaliplatin (Oxa). We also functionalized γ-CyD polymer bearing COOH functionalities with arginine-glycine-aspartic or arginine moieties for targeting the integrin receptors of cancer cells. We tested the Dox and Oxa anti-proliferative activity in the presence of the precursor polymer with COOH functionalities and its derivatives in A549 (lung, carcinoma) and HepG2 (liver, carcinoma) cell lines. We found that CyD polymers can significantly improve the antiproliferative activity of Dox in HepG2 cell lines only, whereas the cytotoxic activity of Oxa resulted as enhanced in both cell lines. The peptide or amino acid functionalized CyD polymers, loaded with Dox, did not show any additional effect compared to the precursor polymer. Finally, studies of Dox uptake showed that the higher antiproliferative activity of complexes correlates with the higher accumulation of Dox inside the cells. The results show that CyD polymers could be used as carriers for repositioning classical anticancer drugs such as Dox or Oxa to increase their antitumor activity.  相似文献   

19.
温敏性聚合物能通过感知温度而实现环境响应,作为药剂可依靠对此类信号的自反馈响应而释放药物或中止释放,极大地增强了释药的持续性和专一性,从而提高了药物的药效和安全性.温敏性聚膦腈是一类新型的温敏材料,它具有良好的生物可降解性质,优良的生物相容性.因此,温敏性聚膦腈作为药物载体用于药物释放体系具有很好的应用前景,近年来备受关注.本文对聚膦腈的温敏性质、生物降解性质进行了评述,并探讨了LCST的影响因素,以及在药物释放体系的应用进展.  相似文献   

20.
Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer–drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning. In this study, polysuccinimide (PSI) based electrospun fibrous meshes conjugated with dopamine (DA) are prepared. Fiber diameter, mechanical properties, dissolution kinetics and membrane permeability are thoroughly investigated, as these are crucial for drug delivery and implantation. Dopamine release kinetics prove the prolonged release that influenced the viability and morphology of periodontal ligament stem cells (PDLSCs) and SH-SY5Y cells. The presence of dopamine receptors on both cell types is also demonstrated and the uptake of the conjugates is measured. According to flow cytometry analysis, the conjugates are internalized by both cell types, which is influenced by the chemical structure and physical properties. In conclusion, electrospinning of PSI-DA conjugates alters release kinetics, meanwhile, conjugated dopamine can play a key role in cellular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号