首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction of one-electron oxidant (Br(2)(*-)) with tryptophol (TP) and 5-hydroxytryptophol (HTP) have been studied in aqueous solution in the pH range from 3 to 10, employing nanosecond pulse radiolysis technique and the transients detected by kinetic spectrophotometry. One-electron oxidation of TP has produced an indolyl radical that absorbs in the 300-600 nm region with radical pK(a) = 4.9 +/- 0.2, while the reaction with HTP has produced an indoloxyl radical with lambda(max) at 420 nm and radical pK(a) < 3. Hydroxyl radicals ((*)OH) react with these two compounds producing (*)OH radical adducts that undergo water elimination to give one-electron-oxidized indolyl and indoloxyl radical species, respectively. The indoloxyl radicals react with the parent compound to form dimer radicals with an average association constant of (6.7 +/- 0.4) x 10(4) M(-1). No such dimerization is observed with indolyl radical, indicating that the presence of the 5-hydroxy group markedly alters its ability to form a dimer. A possible explanation behind such a difference in reactivity has been supported with ab initio quantum chemical calculations.  相似文献   

2.
The aquachromyl(IV) ion, Cr(aq)O(2+), reacts with acetaldehyde and pivaldehyde by hydrogen atom abstraction and, in the presence of O(2), produces acylperoxyl radicals, RC(O)OO(*). In the next step, the radicals react with Cr(aq)OO(2+), a species accompanying Cr(aq)O(2+) in our preparations. The rate constant for the Cr(aq)OO(2+)/CH(3)C(O)OO(*) cross reaction, k(Cr) = 1.5 x 10(8) M(-1) s(-1), was determined by laser flash photolysis. The evidence points to radical coupling at the remote oxygen of Cr(aq)OO(2+), followed by elimination of O(2) and formation of CH(3)COOH and Cr(V)(aq)O(3+). The latter disproportionates and ultimately yields Cr(aq)(3+) and HCrO(4)(-). No CO(2) was detected. The Cr(aq)OO(2+)/C(CH(3))(3)C(O)OO(*) reaction yielded isobutene, CO(2), and Cr(aq)(3+), in addition to chromate. In the suggested mechanism, the transient Cr(aq)OOOO(O)CC(CH(3))(3)(2+) branches into two sets of products. The path leading to chromate resembles the CH(3)C(O)OO(*) reaction. The other products arise from an unprecedented intramolecular hydrogen transfer from the tert-butyl group to the CrO entity and elimination of CO(2) and O(2). A portion of C(CH(3))(3)C(O)OO(*) was captured by (CH(3))(3)COO(*), which was in turn generated by decarbonylation of acyl radicals and oxygenation of tert-butyl radicals so formed.  相似文献   

3.
To clarify the nature of five-center, six-electron (5c-6e) C(2)Z(2)O interactions, atoms-in-molecules (AIM) analysis has been applied to an anthraquinone, 1,8-(MeZ)(2)ATQ (1 (Z=Se), 2 (Z=S), and 3 (Z=O)), and a 9-methoxyanthracene system, 9-MeO-1,8-(MeZ)(2)ATC (4 (Z=Se), 5 (Z=S), and 6 (Z=O)), as well as 1-(MeZ)ATQ (7 (Z=Se), 8 (Z=S), and 9 (Z=O)) and 9-MeO-1-(MeZ)ATC (10 (Z=Se), 11 (Z=S), and 12 (Z=O)). The total electronic energy density (H(b)(r(c))) at the bond critical points (BCPs), an appropriate index for weak interactions, has been examined for 5c-6e C(2)Z(2)O and 3c-4e CZO interactions of the n(p)(O)sigma*(Z--C) type in 1-12. Some hydrogen-bonded adducts were also re-examined for convenience of comparison. The total electronic energy densities varied in the following order: OO (3: H(b)(r(c))=0.0028 au)=OO (6: 0.0028 au)>OO (9: 0.0025 au)> or =NNHF (0.0024 au)> or =OO (12: 0.0023 au)>H(2)OHOH (0.0015 au)>SO (8: 0.0013 au)=SO (2: 0.0013 au)> or =SO (11: 0.0012 au)=SO (5: 0.0012 au)>HFHF (0.0008 au)=SeO (10: 0.0008 au)=SeO (4: 0.0008 au)> or =SeO (1: 0.0007 au)> or =SeO (7: 0.0006 au)>HCNHF (-0.0013 au). H(b)(r(c)) values for SO were predicted to be smaller than the hydrogen bond of H(2)OHOH and H(b)(r(c)) values for SeO are very close to or slightly smaller than that for HFHF in both the ATQ and 9-MeOATC systems. In the case of Z=Se and S, H(b)(r(c)) values for 5c-6e C(2)Z(2)O interactions are essentially equal to those for 3c-4e CZO if Z is the same. The results demonstrate that two n(p)(O)sigma*(Z--C) 3c-4e interactions effectively connect through the central n(p)(O) orbital to form the extended hypervalent 5c-6e system of the sigma*(C--Z)n(p)(O)sigma*(Z--C) type for Z=Se and S in both systems. Natural bond orbital (NBO) analysis revealed that n(s)(O) also contributes to some extent. The electron charge densities at the BCPs, NBO analysis, and the total energies calculated for 1-12, together with the structural changes in the PhSe derivatives, support the above discussion.  相似文献   

4.
The effect of solvent participation on the ligand-to-metal charge transfer (LMCT, L-->Co(III)) reduction of the of Co(III)(en)(2)Br(RC(6)H(4)NH(2))(2+) where R=m-OCH(3), p-F, H, m-CH(3), p-CH(3,)p-OC(2)H(5) and p-OCH(3) were examined in aqueous 2-methyl-2-propanol (Bu(t)OH) solutions. The change in the reduction behavior of Co(III) centre was also examined through cyclic voltammetric studies. The observed reduction in quantum yield due to LMCT excitation can mainly be accounted using linear solvation energy relationship (LSER) comprising model correlation equations. These consist of empirical parameters such as Grunwald-Winstein's solvent ionizing power, Y, Dimroth-Richardt's solvent micro-polarity parameter, E(T)(N), Gutmann's donor number, DN(N), along with Kamlet-Taft's solvatochromic parameters (hydrogen bond acceptor acidity/basicity alpha/beta and solvent dipolarity/polarizability, pi*). The origin of solvent effect is found to be due to microscopic interaction between the solvent donor and the nitrogen-bound hydrogen of the ligand. Cyclic voltammograms show an irreversible reduction of Co(III) in DMF using Glassy Carbon Electrode, GCE, the redox peaks for the aniline complexes appear at -0.20 and 0.525V. Irradiation of the complexes with UV light (lambda=254nm) in binary mixtures produce Co(II)(aq) and the concentration of this species are highly dependent on x(alc) (x(alc)=mole fraction of alcohol). The observed quantum yield (logPhi(Co(II))) is found to be linearly related to mole fraction of organic co-solvent added in the mixture, therefore, logPhi(Co(II))=26.41 x 10(-2) when x(2)=0.0094 and 43.75 x 10(-2) when x(2)=0.076 for a typical complex Co(III)(en)(2)Br(p-OCH(3)C(6)H(4)NH(2))(2+) in aqueous 2-methyl-2-propanol at 300K. Cyclic voltammetry and LSER analyses illustrate the variation of reduction property of Co(III) by the aryl ligand and homogeneous solvation of the excited state of the complex Co(III)(en)(2)Br(RC(6)H(4)NH(2))(2+) in H(2)O/Bu(t)OH mixtures.  相似文献   

5.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

6.
The reactions between gatifloxacin(GFX) and various one-electron oxidants,such as ˙OH,N3˙,Br2˙ˉ,and SO4˙ˉ,have been studied by pulse radiolysis techniques.The GFX radical anion formed in the reaction of GFX with eaqˉ could either be protonated or deprotonated,and the absorption of GFX radical anion was located at 390 nm.The transient species produced by the reaction of GFX with ˙OH radical shows a broad band in the 380?600 nm region with a shoulder,while the oxidation by N3˙,SO4˙ˉ,and Br2˙ˉ results in an absorption band with λmax = 370 nm.At neutral condition(pH 7),the rate constants of GFX reacting with ˙OH,N3˙,Br2˙ˉ,SO4˙ˉ and eaqˉ are estimated to be 1.0 × 1010,3.1 × 109,2.8 × 109,3.0 × 109,and 1.8 × 1010 dm3 mol?1 s?1,respectively.From the pH dependence on the formation of electron adducts and on the rate constant of GFX with eaqˉ,the pKa of GFX radical anion is estimated to be 5.5 and 9.3.  相似文献   

7.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

8.
The water exchange process on [(CO)(3)Re(H(2)O)(3)](+) (1) was kinetically investigated by (17)O NMR. The acidity dependence of the observed rate constant k(obs) was analyzed with a two pathways model in which k(ex) (k(ex)(298) = (6.3 +/- 0.1) x 10(-3) s(-1)) and k(OH) (k(OH)(298)= 27 +/- 1 s(-1)) denote the water exchange rate constants on 1 and on the monohydroxo species [(CO)(3)Re(I)(H(2)O)(2)(OH)], respectively. The kinetic contribution of the basic form was proved to be significant only at [H(+)] < 3 x 10(-3) M. Above this limiting [H(+)] concentration, kinetic investigations can be unambiguously conducted on the triaqua cation (1). The variable temperature study has led to the determination of the activation parameters Delta H(++)(ex) = 90 +/- 3 kJ mol(-1), Delta S(++)(ex) = +14 +/- 10 J K(-1) mol(-1), the latter being indicative of a dissociative activation mode for the water exchange process. To support this assumption, water substitution reaction on 1 has been followed by (17)O/(1)H/(13)C/(19)F NMR with ligands of various nucleophilicities (TFA, Br(-), CH(3)CN, Hbipy(+), Hphen(+), DMS, TU). With unidentate ligands, except Br(-), the mono-, bi-, and tricomplexes were formed by water substitution. With bidentate ligands, bipy and phen, the chelate complexes [(CO)(3)Re(H(2)O)(bipy)]CF(3)SO(3) (2) and [(CO)(3)Re(H(2)O)(phen)](NO(3))(0.5)(CF(3)SO(3))(0.5).H(2)O (3) were isolated and X-ray characterized. For each ligand, the calculated interchange rate constants k'(i) (2.9 x 10(-3) (TFA) < k'(I) < 41.5 x 10(-3) (TU) s(-1)) were found in the same order as the water exchange rate constant k(ex), the S-donor ligands being slightly more reactive. This result is indicative of I(d) mechanism for water exchange and complex formation, since larger variations of k'(i) are expected for an associatively activated mechanism.  相似文献   

9.
The reaction of HCN(2)(SiMe(3))(3) with benzenesulfenyl chloride in a 1:3 molar ratio produces HCN(2)(SPh)(3) (4) as thermally unstable, colorless crystals. The decomposition of (4) in toluene at 95 degrees C was monitored by UV-visible, (1)H NMR and ESR spectroscopy. The major final products of the decomposition were identified as PhSN=C(H)N=NC(H)=NSPh (5) and PhSSPh. The structures of 4 and 5 were determined by X-ray crystallography. The crystals of 4 are monoclinic, space group P2(1)/a, with a = 9.874(2) ?, b = 19.133(2) ?, c = 10.280(2) ?, beta = 113.37(1) degrees, V = 1782.8(5) ?(3), and Z = 4. The final R and R(w) values were 0.042 and 0.049, respectively. The crystals of 5 are monoclinic, space group P2(1)/n, with a = 5.897(6) ?, b = 18.458(10) ?, c = 7.050(8) ?, beta = 110.97(5) degrees, V = 716(1) ?(3), and Z = 2. The final R and R(w) values were 0.075 and 0.085, respectively. The diazene 5 adopts a Z,E,Z structure with weak intramolecular S.N contacts of 2.83 ?, giving rise to four-membered NCNS rings. During the thermolysis of 4 at 95 degrees C in toluene a transient species (lambda(max) 820 nm) was detected. It decomposes with second-order kinetics to give 5 (lambda(max) 450 nm). The ESR spectrum of the reaction mixture consisted of the superposition of a three-line 1:1:1 spectrum (g = 2.0074, A(N) = 11.45 G), attributed to (PhS)(2)N(*), upon a doublet of quintets (1:2:3:2:1) with g = 2.0070, A(N) = 6.14 G, A(H) = 2.1 G assigned to the radical HCN(2)(SPh)(2)(*). Density functional theory (DFT) calculations for the models of the radical showed the E,Z isomer to have the lowest energy. Thermochemical calculations indicate that the decomposition of HCN(2)(SH)(3) into the diazene (Z,E,Z)-HSN=C(H)N=NC(H)=NSH (and 2 HSSH) is substantially more exothermic (DeltaH = -176.1 kJ mol(-)(1)) than the corresponding formation of the isomeric eight-membered ring (HC)(2)N(4)(SH)(2) (DeltaH = -40.6 kJ mol(-)(1)). These calculations also indicate that the diazene is formed by a mechanism in which the RS(*) radical acts as a catalyst.  相似文献   

10.
The pulse radiolysis of aqueous NO has been reinvestigated, the variances with the prior studies are discussed, and a mechanistic revision is suggested. Both the hydrated electron and the hydrogen atom reduce NO to yield the ground-state triplet (3)NO(-) and singlet (1)HNO, respectively, which further react with NO to produce the N(2)O(2)(-) radical, albeit with the very different specific rates, k((3)NO(-) + NO) = (3.0 +/- 0.8) x 10(9) and k((1)HNO + NO) = (5.8 +/- 0.2) x 10(6) M(-)(1) s(-)(1). These reactions occur much more rapidly than the spin-forbidden acid-base equilibration of (3)NO(-) and (1)HNO under all experimentally accessible conditions. As a result, (3)NO(-) and (1)HNO give rise to two reaction pathways that are well separated in time but lead to the same intermediates and products. The N(2)O(2)(-) radical extremely rapidly acquires another NO, k(N(2)O(2)(-) + NO) = (5.4 +/- 1.4) x 10(9) M(-)(1) s(-)(1), producing the closed-shell N(3)O(3)(-) anion, which unimolecularly decays to the final N(2)O + NO(2)(-) products with a rate constant of approximately 300 s(-)(1). Contrary to the previous belief, N(2)O(2)(-) is stable with respect to NO elimination, and so is N(3)O(3)(-). The optical spectra of all intermediates have also been reevaluated. The only intermediate whose spectrum can be cleanly observed in the pulse radiolysis experiments is the N(3)O(3)(-) anion (lambda(max) = 380 nm, epsilon(max) = 3.76 x 10(3) M(-)(1) cm(-)(1)). The spectra previously assigned to the NO(-) anion and to the N(2)O(2)(-) radical are due, in fact, to a mixture of species (mainly N(2)O(2)(-) and N(3)O(3)(-)) and to the N(3)O(3)(-) anion, respectively. Spectral and kinetic evidence suggests that the same reactions occur when (3)NO(-) and (1)HNO are generated by photolysis of the monoprotonated anion of Angeli's salt, HN(2)O(3)(-), in NO-containing solutions.  相似文献   

11.
The photochemistry of maleimide in aqueous solution is governed by the coexistence of up to three different triplet states, the keto triplet (lambda(max)=250, 330 nm, lambda(min)=290 nm, pK(a)=4.4+/-0.1, tau=5 micros), the deprotonated or enolate triplet (lambda(max)=360, 260 nm, lambda(min)=320 nm, shoulder at 370-380 nm) and a dimer triplet. This biradical is formed by the addition of the keto triplet to the double bond of a ground state maleimide in competition with electron transfer, (k( (3)MI+MI)=2.6 x 10(9) dm(3) mol(-1) s(-1)). Its spectrum is identical to that of the maleimide H-adduct radical (lambda(max)=370-380 (broad), 255 nm (narrow), lambda(min)=290 nm) and its lifetime is 110 ns. While protolysis is confined to maleimide and aqueous solutions, the dimer triplet is also found in acetonitrile. Dimer triplet formation is also observed with N-ethylmaleimide. Time-resolved conductometry and buffer experiments were used to characterise excited state protolysis. Multi-wavelength "global analysis" of the time profiles allowed the separation of the transient spectra and study of the kinetics of the monomer and dimer triplets. The cyclobutane dimer yield (determined by GC) is independent of maleimide concentration. This indicates that the dimer triplet does not contribute significantly to the initiation of free-radical polymerisation. Time-dependent Hartree-Fock calculations agree with the experimental data and further confirm the proposed mechanisms.  相似文献   

12.
In water, photolysis of 1,4-benzoquinone, Q gives rise to equal amounts of 2-hydroxy-1,4-benzoquinone HOQ and hydroquinone QH(2) which are formed with a quantum yield of Phi=0.42, independent of pH and Q concentration. By contrast, the rate of decay of the triplet (lambda(max)=282 and approximately 410 nm) which is the precursor of these products increases nonlinearly (k=(2-->3.8) x 10(6) s(-1)) with increasing Q concentration ((0.2-->10) mM). The free-radical yield detected by laser flash photolysis after the decay of the triplet also increases with increasing Q concentration but follows a different functional form. These observations are explained by a rapid equilibrium of a monomeric triplet Q* and an exciplex Q(2)* (K=5500+/-1000 M(-1)). While Q* adds water and subsequent enolizes into 1,2,4-trihydroxybenzene Ph(OH)(3), Q(2)* decays by electron transfer and water addition yielding benzosemiquinone (.)QH and (.)OH adduct radicals (.)QOH. The latter enolizes to the 2-hydroxy-1,4-semiquinone radical (.)Q(OH)H within the time scale of the triplet decay and is subsequently rapidly (microsecond time scale) oxidized by Q to HOQ with the concomitant formation of (.)QH. On the post-millisecond time scale, that is, when (.)QH has decayed, Ph(OH)(3) is oxidized by Q yielding HOQ and QH(2) as followed by laser flash photolysis with diode array detection. The rate of this pH- and Q concentration-dependent reaction was independently determined by stopped-flow. This shows that there are two pathways to photohydroxylation; a free-radical pathway at high and a non-radical one at low Q concentration. In agreement with this, the yield of Ph(OH)(3) is most pronounced at low Q concentration. In the presence of phosphate buffer, Q* reacts with H(2)PO(4) (-) giving rise to an adduct which is subsequently oxidized by Q to 2-phosphato-1,4-benzoquinone QP. The current view that (.)OH is an intermediate in the photohydroxylation of Q has been overturned. This view had been based on the observation of the (.)OH adduct of DMPO when Q is photolyzed in the presence of this spin trap. It is now shown that Q*/Q(2)* oxidizes DMPO (k approximately 1 x 10(8) M(-1) s(-1)) to its radical cation which subsequently reacts with water. Q*/Q(2)* react with alcohols by H abstraction (rates in units of M(-1) s(-1)): methanol (4.2 x 10(7)), ethanol (6.7 x 10(7)), 2-propanol (13 x 10(7)) and tertiary butyl alcohol ( approximately 0.2 x 10(7)). DMSO (2.7 x 10(9)) and O(2) ( approximately 2 x 10(9)) act as physical quenchers.  相似文献   

13.
Hydrothermal reactions of 1,2,4-triazole with zinc and cadmium salts have yielded 10 structurally unique materials of the M(II)/trz/Xn- system, with M(II)=Zn and Cd and Xn-=F-, Cl-, Br-, I-, OH-, NO3-, and SO(4)2- (trz=1,2,4-triazolate). Of the zinc-containing phases, [Zn(trz)2] (1), [Zn2(trz)3(OH)].3H2O (3.3H2O), and [Zn2(trz)(SO4)(OH)] (4) are three-dimensional, while [Zn(trz)Br] (2) is two-dimensional. All six cadmium phases, [Cd3(trz)3F2(H2O)].2.75H2O (5.2.75H2O), [Cd2(trz)2Cl2(H2O)] (6), [Cd3(trz)3Br3] (7), [Cd2(trz)3I] (8), [Cd3(trz)5(NO3)(H2O)].H2O (9.H2O), and [Cd8(trz)4(OH)2(SO4)5(H2O)] (10), are three-dimensional. In all cases, the anionic components Xn- participate in the framework connectivity as bridging ligands. The structural diversity of these materials is reflected in the variety of coordination polyhedra displayed by the metal sites: tetrahedral; trigonal bipyramidal; octahedral. Structures 3, 5, and 7-9 exhibit two distinct polyhedral building blocks. The materials are also characterized by a range of substructural components, including trinuclear and tetranuclear clusters, adamantoid cages, chains, layers, and complex frameworks.  相似文献   

14.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

15.
The [Cu(3)(dppm)(3)OH](BF(4))(2) cyclic cluster host is found to be luminescent at 298 K (lambda(max) = 540 nm; tau(e) = 89 +/- 9 &mgr;s; Phi(e) = 0.14 +/- 0.01) in degassed ethanol solutions and at 77 K (lambda(max) = 480 nm; tau(e) = 170 +/- 40 &mgr;s; Phi = 0.73 +/- 0.07) also in ethanol. The nature of the lowest energy excited states has been addressed theoretically using density functional theory and experimentally using UV-visible, luminescence, and polarized luminescence spectroscopy and is found to be (1,3)A(2) arising from the.(18e)(4)(7a(2))(1)(13a(1))(1) electronic configuration. The excited state geometry optimization for the model Cu(3)(PH(3))(6)OH(2+) compound in its T(1) state ((3)A(2)) has been performed using density functional theory and compared to its ground state structure. The Cu.Cu bond length is expected to decrease greatly in the excited state (calculated DeltaQ approximately 0.47 ?), in agreement with the d(10) electronic configuration. The perturbation of the photophysical properties by the addition of two guest carboxylate anions has been investigated. From the Stern-Volmer plots, the quenching constants, k(q), are 1.65 x 10(8) and 5.10 x 10(8) M(-)(1) s(-)(1) for acetate and 4-aminobenzoate, respectively, which are also proportional to the relative binding strengths of the substrates with Cu(3)(dppm)(3)OH(2+) (i.e., acetate < 4-aminobenzoate).  相似文献   

16.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

17.
The synthesis and photophysical properties are described for a series of porphyrin, phthalocyanine and pyrazinoporphyrazine derivatives which bear four or eight peripheral fluorenyl substituents as antennae. Representative examples are 5,10,15,20-tetra(9,9-dihexyl-9H-fluoren-2-yl)porphyrin (2), 5,10,15,20-tetrakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]porphyrin (3), 2,3,9,10,16,17,23,24-octakis(9,9-dihexyl-9H-fluoren-2-yl)-29H,31H-phthalocyanine (8) and 2,3,9,10,16,17,23,24-octakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]-29H,31H-tetrapyrazinoporphyrazine (9). Palladium-mediated Suzuki-Miyaura cross-coupling reactions have been key steps for attaching the substituents. The compounds are deep-red emitters: lambda(max)(em)=659 (3), 737 (8) and 684 nm (9). Their absorption and emission spectra, their fluorescence lifetimes and quantum yields are correlated with the structures of the macrocycles and the substituents. The solution fluorescence quantum yields of porphyrin derivatives substituted with fluorene (2-4) and terphenyl substituents (7) (Phi(f)=0.21-0.23) are approximately twice that of tetraphenylporphyrin. For phthalocyanine derivative 8, Phi(f) was very high (0.88). Specific excitation of the fluorene units of 8 produced emission from both of them (lambda(max)=480 nm) and also from the phthalocyanine core (lambda(max)=750 nm), indicating a competitive rate of energy transfer and radiative decay of the fluorenes. Organic light-emitting devices (OLEDs) were made by spin-coating techniques by using a polyspirobifluorene (PSBF) copolymer as the host blended with 3 (5 wt. %) in the configuration ITO/PEDOT:PSS/PSBF copolymer:3/Ca/Al. Deep-red emission (lambda(max)=663 nm; CIE coordinates x=0.70, y=0.27) was observed with an external quantum efficiency of 2.5 % (photons/electron) (at 7.5 mA cm(-2)), a low turn-on voltage and high emission intensity (luminance) of 5500 cd m(-2) (at 250 mA/ m(2)).  相似文献   

18.
The reaction of *OH with 2'-deoxyguanosine yields two transient species, both identified as OH adducts (G*-OH), with strongly different reactivity towards O2, or other oxidants, or to reductants. One of these, identified as the OH adduct at the C-8 position (yield 17% relative to *OH), reacts with oxygen with k=4 x 10(9)M(-1)s(-1); in the absence of oxygen it undergoes a rapid ring-opening reaction (k = 2 x 10(5) s(-1) at pH4-9), visible as an increase of absorbance at 300-310 nm. This OH adduct and its ring-opened successor are one-electron reductants towards, for example, methylviologen or [Fe(III)(CN)6]3-. The second adduct, identified as the OH adduct at the 4-position (yield of 60-70% relative to *OH), has oxidizing properties (towards N,N,N',N'-tetra-methyl-p-phenylenediamine, promethazine, or [Fe(II)(CN)6]4-). This OH adduct undergoes a slower transformation reaction (k = 6 x 10(3) s(-1) in neutral, unbuffered solution) to produce the even more strongly oxidizing (deprotonated, depending on pH) 2'-deoxyguanosine radical cation, and it practically does not react with oxygen (k< or = 10(6)M(-1)s(-1)). The (deprotonated) radical cation, in dilute aqueous solution, does not give rise to 8-oxoguanosine as a product. However, it is able to react with ribose with k< or =4 x 10(3)M(-1)S(-1).  相似文献   

19.
The pulse radiolysis of N(2)O saturated aqueous solutions of KSCN was studied under neutral pH conditions. The observed optical absorption spectrum of the SCN(*) radical in solution is more complex than previously reported, but it is in good agreement with that measured in the gas phase. Kinetic traces at 330 and 472 nm corresponding to SCN(*) and (SCN)(2)(*-), respectively, were fit using a Monte Carlo simulation kinetic model. The rate coefficient for the oxidation of SCN(-) ions by OH radicals, an important reaction used in competition kinetics measurements, was found to be (1.4 +/- 0.1) x 10(10) M(-1) s(-1), about 30% higher than the normally accepted value. A detailed discussion of the reaction mechanism is presented.  相似文献   

20.
The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号