首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
Formation of the SEI layer on Si–Cu film electrode in the ionic liquid electrolyte of 1 M lithium bis(trifluoromethylsulfonyl)imide/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/MPP-TFSI) was investigated using ex-situ ATR FTIR and X-ray photoelectron spectroscopy. The SEI layer is found to be composed of organic and inorganic compounds that are the decomposition products of MPP cation and TFSI anion, and effectively passivate the electrode surface during initial cycling. Formation of a stable SEI layer leads to an excellent capacity retention 98% of the maximum discharge capacity, delivering discharge capacities of > 1620 mAhg? 1 over 200 cycles. The data contribute to a basic understanding of SEI formation and composition responsible for the cycling performance of Si-based alloy anodes in ionic liquid electrolyte-based rechargeable lithium batteries.  相似文献   

2.
The role of surface oxygen groups on the kinetics of the V(II) oxidation reaction was studied on modified glassy carbon (GC) electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The reaction was found to be sensitive to the presence of oxygen groups on the electrode surface. Higher O/C ratios determined by X-ray photoelectron spectroscopy (XPS) corresponded to higher reactivities and lower charge transfer resistances measured in a 1 M V(II) electrolyte. The stability of an oxidised GC surface was also investigated in a 1 M V(II) electrolyte by potential holding and cycling experiments. It was found that after holding and cycling to successively more negative potentials up to − 0.8 V/RHE, the electrode surface lost its initial reactivity.  相似文献   

3.
Solid electrolyte interphase (SEI) film formation on graphite electrodes was studied on highly oriented pyrolytic graphite (HOPG) in nonaqueous electrolyte by in situ electrochemical atomic force microscopy (AFM). For potentials negative to 0.7 V versus Li|Li+ a SEI film is formed on the HOPG electrode surface. After the first cycle the film is rough and covers the surface of the HOPG electrode only partially. After the second cycle the HOPG surface is fully covered by a compact film. The thickness of the SEI film was measured by increasing the pressure of the AFM tip and thus scraping a part of the electrode surface. In this way a thickness of about 25 nm was found for the SEI film formed after two scan cycles between 3 and 0.01 V versus Li|Li+.  相似文献   

4.
We developed an electrochemical in situ cell for soft x-ray emission spectroscopy (XES) to accurately investigate the redox reaction and electronic structure of transition metals in the cathode materials for Li–ion battery. The in situ cell consists of a Li–metal counter electrode, an organic electrolyte solution, and a cathode on a membrane window which separates the liquid electrolyte from high vacuum and can pass the incoming and emitted photons. In this study, the Mn 3d electronic structure of LiMn2O4 thin-film electrode was clarified by the operando XES. At the charged state, the XES spectrum changed significantly from the open-circuit-voltage (OCV) state, suggesting oxidation of the Mn3 + component through Li–ion extraction. Upon discharge up to 3.0 V vs. Li/Li+, the XES spectrum almost returned to its profile at the OCV state with small difference, indicating the valence change of Mn: Mn3.6 +  Mn4 +  Mn3.3 + corresponding to the OCV, charged, and discharged states.  相似文献   

5.
In situ Raman spectroscopy was conducted on thin film electrodes of pure LiCoO2 in order to observe the nature of the changes in interfacial structure between LiCoO2 and organic solutions (propylene carbonate and ethylene carbonate containing 1 M LiClO4) when LiCoO2 is scanned up to highly anodic potentials (∼5.0 V Li+/Li). Raman spectra and cyclic voltammograms were recorded simultaneously during the potential scan. We observed a sudden increase in the background signals of the Raman spectra at potentials more positive than 4.7 V. The increased background did not change after potential cycling. The change was irreversible, indicating that surface film formation occurred at positive potentials. As organic compounds fluoresce by visible light, the increased background is ascribed to the formation of a film on the LiCoO2 electrode surface in organic solutions.  相似文献   

6.
In situ atomic force microscopy (AFM) and spectroscopic ellipsometry were used to study the mechanism of organic carbonate electrolytes decomposition and surface layer (re)formation at β-Sn(001) and (100) single crystal electrodes. Interfacial phenomena were investigated at potentials above 0.8 V vs. Li/Li+, i.e. where no Sn–Li alloying takes place. The Sn(001) electrode tends to form a protective surface layer of electrolyte reduction products during the first cathodic CV scan, which effectively inhibits further reduction of the electrolyte upon cycling. In contrast, the Sn(100) electrode produces a thick, inhomogeneous and unstable surface layer. The observed significant difference of Sn reactivity toward the electrolyte as a function of Sn surface crystalline orientation suggests radically different reaction paths, reduction products, and properties of the surface film.  相似文献   

7.
Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2 V vs. Li+/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film to protect lithium anodes from corrosion. Accordingly, Li/LiFePO4 cells initially delivered a discharge capacity of about 127 mAh g?1 at a current density of 17 mA g?1 in the ionic liquid with the addition of VC and showed better cyclability than in the neat ionic liquid. Electrochemical impedance spectroscopy disclosed that the addition of VC enhanced Li-ion diffusion and depressed interfacial resistance significantly.  相似文献   

8.
High lithiation capacity at low red-ox potentials in combination with good safety characteristics makes amorphous Si as a very promising anode material for rechargeable Li batteries.Thin film silicon electrodes were prepared by DC magnetron sputtering of silicon on stainless steel substrates. Their behavior as Li insertion/extraction electrodes was studied by voltammetry and chronopotentiometry at room temperature in the ionic liquid (IL) 1-methyl-1-propylpiperidinium bis(trifluoromethylsuphonil)imide containing 1 M Li bis(trifluoromethylsuphonil)imide. Li/Si cells containing this electrolyte showed good performance with a stable Si electrodes capacity of about 3000 mA h g−1 and a relatively low irreversible capacity. Preliminary results on cycling Si–LiCoO2 cells using this IL electrolyte are also presented.  相似文献   

9.
Perovskite lithium lanthanum titanate (LLTO) was synthesized using sol–gel method. It shows a reversible capacity of 145 mA h g 1 and moderate cycling performance between 0.01 and 2.00 V. Cyclic voltammetry and X-ray diffraction results demonstrate a two-step solid–solution reaction behavior in the voltage range of 0.00–3.00 V upon lithium insertion/extraction. A stable solid electrolyte interphase (SEI) layer is formed on the surface of LLTO after the initial discharge. Carbon coating by chemical vapor deposition improves its cycling performance significantly.  相似文献   

10.
The adsorption of added 2,2′-bipyridine (2,2′-BP) from 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethanesulfonyl)imide (EMMImNTf2) at an Au(111) electrode has been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Addition of 2,2′-BP to the ionic liquid clearly modifies the interfacial region as a result of the competition between 2,2′-BP and EMMImNTf2 to occupy the electrode surface. Within the region of ideal polarizability, the 2,2′-BP adlayer undergoes structural changes, shown by the presence of peaks in the CV curves. Between −0.2 V and + 0.9 V, the capacitance–potential curves obtained from EIS data present a capacity maximum depending strongly on the ac frequency, which is typical pseudo-capacitive behavior indicative of a reorganization of the interfacial layer. At more positive potentials a true capacity value close to 10 μF.cm 2 and invariant with the potential suggests that the 2,2′-BP molecules adopt a perpendicular orientation with the nitrogen atoms facing the electrode surface, similar to their adsorption on gold from aqueous solutions.  相似文献   

11.
Metal-oxygen systems are an attractive option to enhance the specific energy of secondary batteries. However, their power is limited by the oxygen electrode. In this communication we address the issue of the sluggish kinetics of the oxygen cathode in the aprotic Li–O2 batteries. The electrochemical performances of newly designed carbon electrodes coated with 50 Å thick Au layer are evaluated and compared with those of unmodified electrodes. Despite the low noble metal content (~ 2 wt.%), the Li–O2 batteries built with the abovementioned Au-coated cathodes show considerably enhanced kinetics as demonstrated by the higher onset potentials for the oxygen reduction reaction (~ 2.6 V at a current rate of 1000 mA g 1), together with reduced oxygen evolution potentials.  相似文献   

12.
The tin adlayer formed by spontaneous deposition on Au(1 1 1) was characterized by cyclic voltammetry and in situ scanning tunneling microscopy (STM) in sulphuric acid solution. Cyclic voltammetry measurements showed oxidation peaks in the potential range −0.60  E/V vs SSE  0, which can be ascribed to the dissolution of the Sn adsorbed layer. STM images of the Au(1 1 1)/Sn modified surface showed that tin nucleated both on step edges and on the flat terraces forming two-dimensional islands. The anodic polarization of this modified surface produced the gradual dissolution of the Sn adlayer which was evidenced by the formation of some holes and the reduction of the initial terraces to many small islands. STM images with atomic resolution obtained on these islands displayed an hexagonal expanded atomic structure. After the anodic stripping of this Sn adsorbed layer the images exhibited the typical Au(1 1 1) terraces with a (1 × 1) atomic structure. However, at more anodic potentials another dissolution process was observed producing noticeable changes on the surface morphology which could be ascribed to the dissolution of a Au–Sn surface alloy.  相似文献   

13.
Li(Ni1/3Co1/3Mn1/3)O2 microspheres with a tap density of 2.41 g cm−3 have been synthesized for applications in high power and high energy systems, using a simple rheological phase reaction route. Cyclic voltammograms (CV) showed no shift of anodic and cathodic peaks centred at 3.81, 3.69 V for the Ni2+/Ni4+ couple after first cycle. The results of power pulse area specific impedance (ASI) and differential scanning calorimetry (DSC) tests showed lower power impedance and increased thermal stability of the electrode at high rate. These merits mentioned above provided significant improved capacity and rate performance for Li(Ni1/3Co1/3Mn1/3)O2 microspheres, which 159, 147 mAh g−1 discharge capacity was delivered after 100 cycles between 2.5–4.6 V vs. Li at a different discharge rate of 2.5 C (500 mA g−1), 5 C and a constant 0.5 C charge rate, respectively.  相似文献   

14.
A novel all-solid-state thin-film-type rechargeable lithium-ion battery employing in situ prepared both positive and negative electrode materials is proposed. A lithium-ion conducting solid electrolyte sheet of Li2O–Al2O3–TiO2–P2O5-based glass–ceramic manufactured by OHARA Inc. (OHARA sheet) was used as the solid electrolyte, which was sandwiched by Cu and Mn metal films. The Cu/OHARA sheet/Mn layer became an all-solid-state lithium-ion battery after applying d.c. 16 V to the layer, and the resultant battery operated at 0.3–0.8 V with reversible capacity of 0.45 μAh cm?2. High voltage battery was successfully prepared by applying the d.c. high voltage to a five-series of Cu/OHARA sheet/Mn layer, resulting in all-solid-state battery operating at 1.5–4.0 V. The proposed fabrication process will become a new technology to develop advanced all-solid-state rechargeable lithium-ion batteries.  相似文献   

15.
Sulfur doped reduced graphene oxide (S-rGO) is investigated for catalytic activity towards the oxygen reduction reaction (ORR) in acidic and alkaline electrolytes. X-ray photoelectron spectroscopy shows that sulfur in S-rGO is predominantly integrated as thiophene motifs within graphene sheets. The overall sulfur content is determined to be approximately 2.2 at.% (elemental analysis). The catalytic activity of S-rGO towards the ORR is investigated by both rotating disc electrode (RDE) and polymer electrolyte fuel cell (PEFC) measurements. RDE measurements reveal onset potentials of 0.3 V and 0.74 V (vs. RHE) in acidic and alkaline electrolyte, respectively. In a solid electrolyte fuel cell with S-rGO as cathode material, this is reflected in an open circuit voltage of 0.37 V and 0.78 V and a maximum power density of 1.19 mW/cm2 and 2.38 mW/cm2 in acidic and alkaline polymer electrolyte, respectively. This is the first report investigating the catalytic activity of a sulfur doped carbon material in both acidic and alkaline liquid electrolyte, as well as in both proton and anion exchange polymer electrolyte fuel cells.  相似文献   

16.
A novel manufacturing process for catalyst coated membrane (CCM) was utilized to fabricate the membrane electrode assemblies (MEA) for solid polymer electrolyte (SPE) water electrolysis. The properties and performance of the modified CCM were analyzed and evaluated by SEM, electrochemistry impedance spectroscopy (EIS) and IV curves. The characterizations reveal that the sprayed Nafion layers are very effective for increasing the reaction interface between SPE and the electrode catalyst layer. The test experiments show that the SPE water electrolyzer with new MEA structure can lower about 0.1 V of water electrolysis voltage at atmosphere pressure and 2 A cm−2.  相似文献   

17.
In this paper a single electrode supported direct methanol fuel cell (DMFC) is fabricated and tested. The novel architecture combines the elimination of the polymer electrolyte membrane (PEM) and the integration of the anode and cathode into one component. The thin film fabrication involves a sequential deposition of an anode catalyst layer, a cellulose acetate electronic insulating layer and a cathode catalyst layer onto a single carbon fibre paper substrate. The single electrode supported DMFC has a total thickness of 3.88 × 10?2 cm and showed a 104% improvement in volumetric specific power density over a two electrode DMFC configuration under passive conditions at ambient temperature and pressure (1 atm, 25 °C).  相似文献   

18.
The electrochemical behaviour of an electrodeposited cobalt was studied in an aqueous 1 M KOH solution at potentials below ?700 mV vs. saturated calomel electrode. An Electrochemical Quartz Crystal Microbalance and a Rotating Ring Disk Electrode were used in the studies. Formation of a hardly reducible passive layer is responsible for time evolution of cyclic voltammetry curves. This layer can be reduced only by holding potential below ?900 mV. The role of active Co dissolution in the evolution of CV profiles is of minor importance.  相似文献   

19.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

20.
A method for the fabrication of metallic nanoparticles in large quantities by electrochemical discharges is presented. In an aqueous electrolyte, large current density (∼1 A/mm2 at ∼20 V) leads to the formation of a ‘gas film’ around the electrode through which discharges occur. When metal ions are additionally present in the electrolyte and when the applied potential is cathodic, metal nanoparticles (typically 10–150 nm) are produced. The nanoparticles are formed in the solution and the gas film prevents them from depositing on the electrode. To control the size of the particles a method based on ‘rotating electrode’ is developed. Rotating the cathode rotates the fluid around it, which provides centrifugal force to the particles to move away from the electrode where they cannot grow. This method has been successfully used for fabrication of nanoparticles from several metal salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号