首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Quantum-sized ZnS nanocrystals with quasi-spherical and rod shapes were synthesized by the aging reaction mixtures containing diethylzinc, sulfur, and amine. Uniform-sized ZnS nanorods with the average dimension of 5 nm x 21 nm, along with a small fraction of 5 nm-sized quasi-spherical nanocrystals, were synthesized by adding diethylzinc to a solution containing sulfur and hexadecylamine at 125 degrees C, followed by aging at 300 degrees C. Subsequent secondary aging of the nanocrystals in oleylamine at 60 degrees C for 24 h produced nearly pure nanorods. Structural characterizations showed that these nanorods had a cubic zinc blende structure, whereas the fabrication of nanorods with this structure has been known to be difficult to achieve via colloidal chemical synthetic routes. High-resolution TEM images and reaction studies demonstrated that these nanorods are formed from the oriented attachment of quasi-spherical nanocrystals. Monodisperse 5 nm-sized quasi-spherical ZnS nanocrystals were separately synthesized by adding diethylzinc to sulfur dissolved in a mixture of hexadecylamine and 1-octadecene at 45 degrees C, followed by aging at 300 degrees C. When oleic acid was substituted for hexadecylamine and all other procedures were unchanged, we obtained 10 nm-sized quasi-spherical ZnS nanocrystals, but with broad particle size distribution. These two different-sized quasi-spherical ZnS nanocrystals showed different proportions of zinc blende and wurtzite crystal structures. The UV absorption spectra and photoluminescence excitation spectra of the 5 nm ZnS quasi-spherical nanocrystals and of the nanorods showed a blue-shift from the bulk band-gap, thus showing a quantum confinement effect. The photoluminescence spectra of the ZnS nanorods and quasi-spherical nanocrystals showed a well-defined excitonic emission feature and size- and shape-dependent quantum confinement effects.  相似文献   

2.
A simple, easy approach to the synthesis of semiconductor ZnS nanorods and nanoparticles exhibiting versatile morphology-formation ability is reported. Water-insoluble zinc sulfide nanocrystals were synthesized in ternary water-in-oil (w/o) microemulsion systems stabilized by either nonionic or, in contrast, cationic surfactant. Products were visualized by transmission electron microscopy (TEM) and identified by energy-dispersive X-ray spectroscopy (EDAX); electron diffraction (ED) was also performed for individual nanorods. With varying molar ratios of water to surfactant (omega0) in solution, hence changing droplet sizes of water pool of microemulsions consequently, several morphologies with different size spans were encountered in the formation of ZnS, such as nanorods and spherical or ellipsoidal particles. Meanwhile, product morphology was also found to be sensitive to the absolute reactant concentration and concentration ratio of [Zn2+] to [S2-], the incubation time, and the ambient temperature. A schematic mechanism for the formation of ZnS nanocrystals and their morphological diversity is described. It is feasible to extend this method to the synthesis of one-dimensional nanocrystals of other semiconductors, given suitable formulae of microemulsions and other appropriate reaction conditions.  相似文献   

3.
We demonstrate here that ZnS nanotubes can be successfully synthesized via a facile conversion process from ZnO nanorods precursors. During the conversion process, ZnO nanorods are first prepared as sacrificial templates and then converted into tubular ZnO/ZnS core/shell naonocomposites through a hydrothermal sulfidation treatment by using thioacetamide (TAA) as sulfur source. ZnS nanotubes are finally obtained through the removal of ZnO cores of tubular ZnO/ZnS core/shell naonocomposites by KOH treatment. The photoluminescence (PL) characterization of the as-prepared products shows much enhanced PL emission of tubular ZnO/ZnS core/shell nanocomposites compared with their component counterparts. The probable mechanism of conversion process is also proposed based on the experimental results.  相似文献   

4.
Preparation of ZnS nanorods by a liquid crystal template   总被引:2,自引:0,他引:2  
ZnS nanorods were synthesized in lamellar liquid crystals of C(12)E(4) by mixing zinc ions and thioacetamide (TAA) solution. The effects of the reactant concentration and the surfactant/water molar ratio in the liquid crystal system on the morphology and size of the ZnS particles were investigated. The prepared ZnS particles are regular nanorods having a width of about 60 nm and a length of about 80-380 nm, with a largest aspect ratio of about 6.3. A lamellar liquid crystal templating mechanism has been proposed to interpret the experimental results.  相似文献   

5.
Rod-like nanocrystals of the semiconductor alloy (ZnS)(x) (CuInS(2) )(1-x) (ZCIS) have been colloidally prepared by using a one-pot non-injection-based synthetic strategy. The ZCIS nanorods crystallize in the hexagonal wurtzite structure and display preferential growth in the direction of the c axis. The bandgap of these quarternary alloyed nanorods can be conveniently tuned by varying the ratio of ZnS to CuInS(2) . A non-linear relationship between the bandgap and the alloy composition is observed. The ZCIS nanorods are found to exhibit promising photocatalytic behaviour in visible-light-driven degradation of Rhodamine?B.  相似文献   

6.
Quasi-polyhedral ZnS nanocrystals with monodisperse tunable sizes of 40, 52, 62, 73, 82, 94, 103, and 110 nm have been synthesized in aqueous solution by regulating the amounts of thioacetamide, zinc acetate, and acetic acid added. The mixture was heated to 120°C in an oven for 10–20 min to produce the nanocrystals. Structural characterization reveals the formation of cubic zinc blende ZnS with some polycrystallinity, which possibly influences their optical properties, that is, the measured band gaps do not give a continuous narrowing trend with increasing particle size. However, when particle sizes are expressed in terms of volumes, the absorption band positions show steady red shifts with increasing crystal dimensions and very small wavelength changes for nanocrystals beyond 90 nm. Thus, these ZnS nanocrystals still possess some size-dependent optical properties despite their polycrystalline nature.  相似文献   

7.
Rod-like nanocrystals of the semiconductor alloy (ZnS)x(CuInS2)1−x (ZCIS) have been colloidally prepared by using a one-pot non-injection-based synthetic strategy. The ZCIS nanorods crystallize in the hexagonal wurtzite structure and display preferential growth in the direction of the c axis. The bandgap of these quarternary alloyed nanorods can be conveniently tuned by varying the ratio of ZnS to CuInS2. A non-linear relationship between the bandgap and the alloy composition is observed. The ZCIS nanorods are found to exhibit promising photocatalytic behaviour in visible-light-driven degradation of Rhodamine B.  相似文献   

8.
We have synthesized nanoparticles of hexagonal CdS in the diameter range 3-13 nm by the reaction of cadmium acetate dihydrate with thioacetamide in imidazolium [BMIM]-based ionic liquids. We have obtained three different particle sizes of CdS by changing the anion of the ionic liquid. Addition of trioctylphosphine oxide (TOPO) to the reaction mixture causes greater monodispersity as well as smaller particle size, while addition of ethylenediamine produces nanorods of 7 nm average diameter. Hexagonal ZnS and cubic PbS nanoparticles with average diameters of 3 and 10 nm, respectively, have been prepared by the reaction of the metal acetates with thioacetamide in [BMIM][BF4]. Hexagonal CdSe nanoparticles with an average diameter 12 nm were obtained by the reaction of cadmium acetate dihydrate with dimethylselenourea in [BMIM][BF4]. In this case also we observe the same effect of the addition of TOPO as in the case of CdS. Addition of ethylenediamine to the reaction mixture gives rise to nanorods. ZnSe nanowires with a cubic structures, possible diameters in the range 70-100 nm by the reaction of zinc acetate dihydrate with dimethylselenourea in [BMIM][MeSO4]. The nanostructures obtained are single crystalline in all the cases. Most of the nanostructures show characteristic UV/Vis absorption and photoluminescence emission spectra. The thermodynamically most stable structures are generally produced in the synthesis carried out in ionic liquids.  相似文献   

9.
三维SiO2欧泊模板溶剂热法制备硫化锌光子晶体   总被引:2,自引:0,他引:2  
以单分散二氧化硅微球在重力场下自组装得到的三维有序欧泊(opal)为模板,采用溶剂热法在模板空隙内生长ZnS晶体,从而制备高质量的硫化锌基光子晶体. 通过X射线衍射(XRD)和Raman光谱证明ZnS晶体为闪锌矿结构且晶体质量较好,并对其生长机理进行了讨论. 通过场发射扫描电子显微镜(FESEM)和紫外-可见分光光度计对所合成的ZnS/opal复合物与ZnS反欧泊结构进行了表征,结果表明两种结构都保持了欧泊三维有序性,并且在Г-L方向(垂直于(111)方向)上出现了布拉格衍射峰,说明其具有良好的光子晶体特性.  相似文献   

10.
Chen X  Xu H  Xu N  Zhao F  Lin W  Lin G  Fu Y  Huang Z  Wang H  Wu M 《Inorganic chemistry》2003,42(9):3100-3106
The high-temperature (over 1020 degrees C) polymorph of ZnS, wurtzite ZnS, has been successfully prepared through a low-temperature (180 degrees C) hydrothermal synthesis route in the presence of ethylenediamine (en). The effects of en concentrations, reactant concentrations, reaction temperatures, and reaction times on crystal structures and shapes of ZnS have been investigated. We have demonstrated that the wurtzite ZnS showing rodlike morphology can be kinetically stabilized in the presence of en, especially at a high reactant concentration under appropriate hydrothermal conditions. Besides phase evolution of ZnS from hexagonal to cubic, morphological transformation from nanorods to nanograins has also been observed in the present investigation. Nanograins of phase-pure cubic ZnS, the thermodynamically stable polymorph, are easily prepared, and no hexagonal ZnS nanorods are detected in "pure" water, i.e., in the absence of en molecules. The above investigations indicate that the controlled fabrication of wurtzite ZnS nanorods is due to a mediated generation of the lamellar phase, ZnS.0.5en, a covalent organic-inorganic network based on ZnS slabs, and to its subsequent thermolysis in aqueous solution. The controlled growth of wurtzite ZnS nanorods and sphalerite ZnS nanograins provides us an opportunity to structurally modulate physical properties. These wurtzite ZnS nanorods display narrower and stronger blue emission than sphalerite ZnS nanograins.  相似文献   

11.
以辛基酚聚氧乙烯醚(OP-10)为表面活性剂, 二甲基甲酰胺(DMF)/水为溶剂, 用沉淀法制备了纳米球、纳米棒、纳米片等多种形貌可控的ZnS纳米晶, 并且用透射电子显微镜、X射线衍射、紫外吸收、荧光光谱对其进行了表征, 并且分析了其形貌转变机理.  相似文献   

12.
Vertically aligned ZnO nanorods with uniform diameter and length have been synthesized on a zinc foil substrate with ammonium persulfate as oxidant via a facile, larger scale production and inexpensively synthesized method without any templates or additives. SEM and XRD studies indicate that ZnO nanorods are well-oriented along the c-axis. The PL spectrum indicates that our as-synthesized ZnO nanorods with a stronger and wider green emission are promising candidates as electron nanoconductors in nano-optoelectronic devices. Furthermore, by an effective thioglycolic acid-assisted solution route, well-aligned ZnO/ZnS nanocable and ZnS nanotube arrays have been successfully synthesized. ZnS nanotubes show a perfect hexagonal and obvious tubular shape. Our present strategy shows mild growth conditions and good reproducibility.  相似文献   

13.
Nanoparticles of zinc sulfide doped with Ce3+ have been synthesized through a simple chemical precipitation method utilizing optimum dopant concentration (1.5 g) and employing various concentrations of polyvinylpyrrolidone (PVP, M.W: 40,000) as capping agent. The optical properties of the synthesized products were studied by UV–Vis absorption and photoluminescence measurements. The phase and size of the products were predicted by X-ray diffraction data. The existence of functional groups in the synthesized products was identified by Fourier transform infrared spectroscopy. Field emission scanning electron microscope results of Ce3+ doped ZnS show a uniform growth pattern of the nanorods with flowerlike structure. However, on surfactant assisted Ce3+ doped ZnS nanoparticles, the morphology of the products was changed from rod to spherical particles. The morphologies of the uncapped and PVP capped ZnS nanocrystals were confirmed by high resolution transmission electron microscopy.  相似文献   

14.
In this study, we have developed for the first time a fast and energy‐efficient method for the synthesis of PbS nanocrystals with systematic shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. The method involves the addition of a small volume of preheated lead acetate and thioacetamide (TAA) mixture to an aqueous growth solution of lead acetate, thioacetamide, cetyltrimethylammonium bromide, and nitric acid. By varying the amount of thioacetamide added to the growth solution, PbS nanocrystals with different morphologies were generated in 2 h at 90 °C. Slight experimental modifications were adopted to generate truncated octahedra. The nanocrystals have very uniform dimensions with average sizes of 32–47 nm. Their structures have been extensively examined by electron microscopy. Nanocube sizes can also be tuned within a range. UV/Vis absorption spectra of PbS cubes, cuboctahedra, and octahedra all show decreasing but continuous absorption from 300 nm to beyond 1000 nm. By monitoring the speed of darkening of solution color, particle growth rate was found to be fastest for nanocubes, followed by truncated cubes, cuboctahedra, and octahedra. These monodisperse nanocrystals can readily form self‐assembled structures. Truncated cubes and octahedra that form monolayer and multilayer packing arrangements have also been studied. This green approach to the synthesis of PbS nanocrystals with fine size and shape control should allow for investigations of their facet‐dependent properties and the fabrication of novel heterostructures.  相似文献   

15.
In this work, we report a facile hydrothermal method for the preparation of three dimensional hollow ZnS nanostructures, using Zinc bis(salicyle aldehitato), Zn(Sal)2, thioacetamide (TAA) and thioglycolic acid (TGA) as Zn2+, sulfur source and capping agent, respectively. The ZnS solid and hollow sphere was produced from the self-assembly of nanoparticles with diameters of 11 ± 2 nm with TGA and TGA, TAA, respectively. Furthermore, with changing zinc precursor from Zn(Sal)2 to zinc acetate [Zn(OAC)2], ZnS nanorods were obtained. The products were characterized by XRD, SEM, TEM, selected area electron diffraction, and FT-IR spectra. The influence of surfactant (Polyethylene glycol) on the morphology of the products was also investigated. Possible formation mechanism and optical properties of these architectures were also reported.  相似文献   

16.
Ag^+ -doped ZnS nanocrystals surface-capped with thiourea (expressed as ZnS: Ag/thiourea) were synthesized through sol-gel method with thiourea as a surface modifier and characterized by X-ray diffraction(XRD), transmission electron microscope(TEM), X-ray fluorescence spectrum(XRF), infrared spectrum (IR), UV-Vis absorption spectrum( UV-Vis), and photoluminescence spectrum(PL). The results show that Ag^+ ions are doped in ZnS nanocrystals, and the sulfur atoms in thiourea molecules coordinate with metal ions on the surface of the nanocrystals. The spherical ZnS: Ag/thiourea nanocrystals with an average diameter of 5 nm have good fluorescent characteristics, and therefore have great potential for use in molecular assembly and novel luminescence materials.  相似文献   

17.
ZnS nanorods doped with 0-15 mol% of Cu have been prepared by simple solvothermal process. With gradual increase in the Cu concentration, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed. Twins and stacking faults were developed due to atomic rearrangement in the heavily doped ZnS nanorods during phase transformation. UV-vis-NIR absorbance spectroscopy ruled out the presence of any impure Cu-S phase. The doped ZnS nanorods showed luminescence over a wide range from UV to near IR with peaks at 370, 492-498, 565 and 730 nm. The UV region peak is due to the near-band-edge transition, whereas, the green peak can be related to emission from elementary sulfur species on the surfaces of the nanorods. The orange emission at 565 nm may be linked to the recombination of electrons at deep defect levels and the Cu(t2) states present near the valence band of ZnS. The near IR emission possibly originated from transitions due to deep-level defects.  相似文献   

18.
Highly ordered silver sulfide nanorods conjugated with the Bovine Serum Albumin (BSA) protein have been successfully achieved at ambient temperature. Such a process is very simple and controllable, directly using silver nitrate and thioacetamide (TAA) as the reactants in the aqueous solution of BSA. The products have been characterized by XRD, HRTEM-SAED, SEM-EDS, TG-DTA, FT-IR, and CD spectroscopy. The results of the research show that the as-prepared Ag2S nanorods are monodispersed with sizes about 40 nm in diameter and 220 nm in length, and exhibit a high degree of crystallinity and good photoluminescence. Furthermore, an interesting mechanism is discussed for the formation of the Ag2S nanorods.  相似文献   

19.
ZnS nanocrystal, a class of wide-gap semiconductors, has shown interesting optical, electrical, and optoelectric properties via quantum confinement. For those applications, phase controls of ZnS nanocrystals and nanowires were critical to tune their physical properties to the appropriate ones. The wurtzite ZnS nanocrystal growth at room temperature is the useful fabrication; however, the most stable ZnS structure in nanoscale is the zinc blende (cubic) structure, and scientists have just begun exploring the room-temperature synthesis of the wurtzite (hexagonal) structure of ZnS nanocrystals. In this report, we applied the Zn finger-like peptides as templates to control the phase of ZnS nanocrystals to the wurtzite structure at room temperature. The peptide nanotubes, consisting of a 20 amino acids (VAL-CYS-ALA-THR-CYS-GLU-GLN-ILE-ALA-ASP-SER-GLN-HIS-ARG-SER-HIS-ARG-GLN-MET-VAL, M1 peptide) synthesized based on the peptide motif of the Influenza Virus Matrix Protein M1, could grow the wurtzite ZnS nanocrystals on the nanotube templates in solution. In the M1 protein, the unfolding process of the helical peptide motif via pH change creates a linker region between N- and C-terminated helical domains that contains a Zn finger-like Cys2His2 motif. Because the higher pH increases the uptake of Zn ions in the Cys2His2 motif of the M1 peptide by unfolding more helical domains, the pH change can essentially control the size and the number of the nucleation sites in the M1 peptides to grow ZnS nanocrystals with desired phases. Here we optimized the nucleation sites in the M1 peptides by unfolding them via pH change to obtain highly monodisperse and crystalline wurtzite ZnS nanocrystals on the template nanotubes at room temperature. This type of peptide-induced biomineralization technique will provide a clean and reproducible method to produce semiconductor nanotubes due to its efficient nanocrystal formation, and the band gaps of resulting nanotubes can also be tuned simply by phase control of ZnS nanocrystal coatings via the optimization of the unfolding peptide structures.  相似文献   

20.
ZnO/ZnS heterostructured nanorod arrays with uniform diameter and length were synthesized from zinc substrates in a one-pot procedure by using a simple hydrothermal method. Structural characterization by HRTEM indicated that the heterostructured nanorods were composed of parallel segments of wurtzite-type ZnO and zinc-blende ZnS, with a distinct interface along the axial direction, which revealed the epitaxial relationship, ZnO (1010) and ZnS (111). The as-prepared ZnO/ZnS nanorods showed only two green emissions at around 523?nm and 576?nm. We also found that the nanorods exhibited high sensitivity to ethanol at relatively low temperatures, owing to their smaller size and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号