首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed structural, magnetic, and luminescence studies of six different crystalline phases obtained in the lanthanide/pyrimidine-4,6-dicarboxylate/oxalate system have been afforded: {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·3H(2)O}(n) (1-Ln), {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(3)]·2H(2)O}(n) (2-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·~2.33H(2)O}(n) (3-Ln), {[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H(2)O)(3)]·5H(2)O}(n) (4-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·H(2)O}(n) (5-Ln), and [Ln(pmdc)(1.5)(H(2)O)(2.5)] (6-Ln). The slow generation of the oxalate (ox) anion, obtained from the in situ partial hydrothermal decomposition of the pyrimidine-4,6-dicarboxylate (pmdc) ligand, allows us to obtain good shaped single crystals, while direct addition of potassium oxalate provides the same compounds but as polycrystalline samples. The crystal structures of all compounds are based on the double chelation established by the pmdc and ox ligands to provide distorted 2D honeycomb layers that, in some cases, are fused together, leading to 3D systems, by replacing some of the coordinated water molecules that complete the coordination sphere of the lanthanide by uncoordinated carboxylate oxygen atoms of the pmdc. The presence of channels occupied by crystallization water molecules is also a common feature with the exception of compounds 5-Ln. It is worth noting that compounds 3-Ln present a commensurate crystal structure related to the partial occupancy of the crystallization water molecules placed within the channels. Topological analyses have been carried out, showing a previously nonregistered topology for compounds 4-Ln, named as jcr1. The crystal structures are strongly dependent on the lanthanide ion size and the temperature employed during the hydrothermal synthesis. The lanthanide contraction favors crystal structures involving sterically less hindranced coordination environments for the final members of the lanthanide series. Additionally, reinforcement of the entropic effects at high temperatures directs the crystallization process toward less hydrated crystal structures. The magnetic data of these compounds indicate that the exchange coupling between the lanthanide atoms is almost negligible, so the magnetic behavior is dominated by the spin-orbit coupling and the ligand field perturbation. The luminescence properties that exhibit the compounds containing Nd(III), Eu(III), and Tb(III) have been also characterized.  相似文献   

2.
Conventional reactions of the new multidentate ligand 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp, 1) with copper(II) salts lead to four novel multidimensional coordination complexes [Cu(7atp)(mal)(H(2)O)(2)]·H(2)O (2), [Cu(2)(μ-7atp)(4)(H(2)O)(2)](ClO(4))(4)·3H(2)O (3), {[Cu(7atp)(2)(μ-ox)]·3H(2)O}(n) (4) and {[Cu(7atp)(2)(μ-suc)]·2H(2)O}(n) (5), where ox(2-), mal(2-) and suc(2-) mean oxalate, malonate and succinate, respectively. In these compounds, the 7atp ligand coordinates monodentately through its atom N3, except for compound 3, which displays N3-N4 coordination mode, giving rise to all to structures with diverse topologies and dimensionality. Compound 2 is a mononuclear entity, 3 consists of dinuclear species, 4 is a zig-zag chain with oxalate as a bridging ligand and 5 is a succinate-bridged mono-dimensional system. All polynuclear metal complexes show antiferromagnetic interactions of with J values ranging from -0.12 to -49.5 cm(-1). The ligand donor capabilities have been estimated by topological analyses of the electron density (QTAIM) and electron localization function (ELF), obtained by DFT calculations. The compounds are the first structurally characterized copper(II) complexes containing the 7atp ligand.  相似文献   

3.
Control over the synthetic conditions in many metal/diazinedicarboxylato systems is crucial to prevent oxalate formation, since dicarboxylato ligands easily undergo degradation in the presence of metal salts. We report here an efficient route to obtain oxalato-free compounds for the lanthanide/pyrimidine-4,6-dicarboxylato (pmdc) system on the basis of the reaction temperature and nonacidic pH or oxygen free atmosphere. Two different crystal architectures have been obtained: {[Ln(μ-pmdc)(1.5)(H(2)O)(3)]·xH(2)O}(n) (1-Ln) and {[Ln(2)(μ(4)-pmdc)(2)(μ-pmdc)(H(2)O)(2)]·H(2)O}(n) (2-Ln) with Ln(III) = La-Yb, except Pm. Both crystal structures are built from distorted two-dimensional honeycomb networks based on the recurrent double chelating mode established by the pmdc. In compounds 1-Ln, the tricapped trigonal prismatic coordination environment of the lanthanides is completed by three water molecules, precluding a further increase in the dimensionality. Crystallization water molecules are arranged in the interlamellar space, giving rise to highly flexible supramolecular clusters that are responsible for the modulation found in compound 1-Gd. Two of the coordinated water molecules are replaced by nonchelating carboxylate oxygen atoms of pmdc ligands in compounds 2-Ln, joining the metal-organic layers together and thus providing a compact three-dimensional network. The crystal structure of the compounds is governed by the competition between two opposing factors: the ionic size and the reaction temperature. The lanthanide contraction rejects the sterically hindered coordination geometries whereas high-temperature entropy driven desolvation pathway favors the release of solvent molecules leading to more compact frameworks. The characteristic luminescence of the Nd, Eu, and Tb centers is improved when moving from 1-Ln to 2-Ln compounds as a consequence of the decrease of the O-H oscillators. The magnetic properties of the compounds are dominated by the spin-orbit coupling and the ligand field perturbation, the exchange coupling being almost negligible.  相似文献   

4.
Antimony compounds that feature multidentate aryloxide ligands, namely [eta4-N(o-C6H4O)3]Sb(OSMe2), {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2, and {[eta3-PhN(o-C6H4O)2]Sb}4(mu3-O)2 have been synthesized from N(o-C6H4OH)3 and PhN(o-C6H4OH)2 and structurally characterized by X-ray diffraction. While [eta4-N(o-C6H4O)3]Sb(OSMe2) exists as a discrete mononuclear species, the oxo complexes {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2 and {[eta3-PhN(o-C6H4O)2]Sb}4(micro3-O)2 are multinuclear. Specifically, the dinuclear fragment {[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)} exists in a dimeric form due to the bridging oxo ligand participating in an intermolecular hydrogen bonding interaction, while the dinuclear fragment {[eta3-PhN(o-C6H4O)2]Sb}2(mu-O) exists in a dimeric form due to the bridging oxo ligand serving as a donor to the antimony of a second fragment. The structures of {{[eta3-N(o-C6H4OH)(o-C6H4O)2]Sb}2(mu2-O)}2 and {[eta3-PhN(o-C6H4O)2]Sb}4(mu3-O)(2), therefore, indicate that an oxo ligand bridging two Sb(III) centers is sufficiently electron rich to serve as both an effective hydrogen bond acceptor and as a ligand for an additional Sb(III) center.  相似文献   

5.
A series of manganese(II) coordination polymers containing the bridging ligand pyrimidine-4,6-dicarboxylate (pmdc) have been prepared. The stoichiometries and structural features of these materials, which range from the one-dimensional (1D) chains in ([Mn(mu-pmdc)(H2O)3].2H2O)n (1) and ([Mn2(mu-pmdc)2(H2O)5].2H2O)n (2) to the two-dimensional layers in ([Mn(mu3-pmdc)(H2O)].H2O)n (3) or the three-dimensional porous network in ([Mn(pmdc)].2H2O)n (4), are extremely dependent on the synthetic conditions (i.e., temperature and solvent). In spite of the structural diversity of these systems, crystallographic studies revealed that the pmdc ligand typically displays a tetradentate mu-(kappaO,kappaN:kappaO',kappaN') coordination mode with the carboxylate groups almost coplanar with the pyrimidine ring [as in compounds 1 and 2 and compound 5 described below)]. In compound 3, the pmdc moiety adopts a pentadentate mu3-(kappaO,kappaN:kappaO',kappaN':kappaO) coordination mode. The thermal, magnetic, and adsorption properties of these systems were also studied. The results showed that these compounds behave as antiferromagnets as a consequence of efficient magnetic exchange through the pmdc bridges. Compound 4 possesses permanent porosity, as proved by gas sorption data (N2 at 77 K and CO2 at 293 K). Finally, the heteronuclear iron(II)/manganese(II) compound ([FeMn(mu-pmdc)2(H2O)5].2H2O)n (5), which is isomorphous to 2, was also prepared and fully characterized.  相似文献   

6.
Transition Metal Chemistry - Six mixed metal complexes with 3-aminopyridine (3-ampy) as a co-ligand have been synthesized: catena-{[M(μ2-3-ampy)(H2O)4]SO4·H2O} (M=Ni (1) and Co (2)),...  相似文献   

7.
The reaction of M(S2O6) (M = Cu(II), Ni(II), and Co(II)) with 4,4'-bipyridine-N,N'-dioxide (bpdo) results in the formation of novel 3D, 2D, and mononuclear complexes. Complex 1, {[Cu(H2O)(bpdo)2](S2O6)(H2O)}n, is a 2-D wavelike polymer with the Cu(II) ion located on a 2-fold axis and having a distorted square-pyramidal coordination sphere. With Co(II) and Ni(II), 3-D complexes, {[M(bpdo)3](S2O6)(C2H5OH)7}n [M = Co(II) (2), Ni(II) (3)], were obtained. The metal atoms are situated on centers of symmetry and have octahedral environments coordinated to six bpdo molecules. The same reaction in aqueous solution with a metal/ligand ratio of 1:1 results in the formation of mononuclear complexes, {[M(bpdo)(H2O)5](SO4)(H2O)2} [M = Co(II) (4), Ni(II) (5)], accompanied by the decomposition of the dithionate anions S2O6(2-) to sulfate anions SO4(2-).  相似文献   

8.
Two flexible thioether-containing heterocyclic ligands bis(2-pyrazylmethyl)sulfide (L1) and 2-benzylsulfanylmethylpyrazine (L2) have arene rings with differing pi-acidities which were used to probe anion-pi binding in five 1-D coordination polymers formed from the metal salts Co(ClO4)2, Ni(NO3)2, and Cd(NO3)2. In {[Co(L1)(MeCN)2](ClO4)2}infinity (1), {[Ni(L1)(NO3)2]}infinity (2), and {[Cd2(L1)(MeCN)(H2O)(NO3)4].H2O}infinity (3.H2O), the symmetrical ligand L1 was bound facially to the metal center and was bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The folding of L1 formed U-shaped pi-pockets in 1 and 3.H2O which encapsulated free and bound anions, respectively. The anions interacted with the pi-acidic centers in a variety of different binding modes including anion-pi-anion and pi-anion-pi sandwiching. A wider pi-pocket was formed in 2 which also contained anion-pi interactions. The polymer chains in 2 were interdigitated through a rare type of complementary T-shaped N(pyrazine)...pi interaction. In {[Co(L2)(H2O)3](ClO4)2.H2O}infinity (4.H2O) and {[Cd(L2)(H2O)(NO3)2]}infinity (5), the unsymmetrical ligand L2 chelated the metal center and bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The ligand arrangement resulted in the anions in both structures being involved in only anion-pi-anion sandwich interactions. In 4.H2O, the noncoordinated ClO4- anions interacted with only one chain while in 5 the coordinated NO3- anions acted as anion-pi supramolecular synthons between chains. Comparison between the polymers formed with ligands L1 and L2 showed that only the more pi-acidic ring was involved in the anion-pi interactions.  相似文献   

9.
Three new polymeric squarato-bridged manganese complexes {[Mn(H(2)O)(2)(bpe)(sq)].bpe.H(2)O}(n) (1), [Mn(2)(H(2)O)(4)(phen)(2)(sq)(2)](n) (2) and [Mn(2)(H(2)O)(2)(phen)(4)(sq)].(sq).8(H(2)O) (3) [bpe, 1,2-bis(4-pyridyl)ethane; phen, 1,10-phenanthroline; sq, squarate dianion] have been synthesized and characterized by single crystal X-ray diffraction analysis and variable temperature magnetic studies. Complex 1 is a 2D rectangular grid-like structure, achieved through flexible bpe bridging ligands and squarate dianions. On the other hand the use of chelating phen instead of bpe gives rise to a 1D polymeric chain in complex 2 and to a dinuclear entity in 3. In all the three complexes weak interactions play a vital role in stabilizing the solid-state structure. Variable temperature (2-300 K) magnetic studies indicate weak antiferromagnetic coupling between the metal centres in all the complexes.  相似文献   

10.
Solvothermal reactions of 3,5-dimethyl-2,6-bis(3-(pyrid-2-yl)-1,2,4-triazolyl) pyridine (L), 1,4-benzendicarboxylic acid (H2bdc), and transitional metal cations of MII (M = Mn, Co, Cd) in the presence of oxalic acid (H2ox) afford three novel supramolecular polymers (CPs), namely, {[M2(ox)(L)2][bdc][M2(Hox)2(OH)2(H2O)4].3H2O}n (M=Mn for 1, Co for 2, Cd for 3). Single-crystal X-ray diffraction analysis reveals that complexes 1-3 are isostructural and the 3D supramolecular structure was connected through non-covalent interactions. With the help of H2ox, the L ligands cheated with center atoms forming a butterfly [M2(ox)(L)2]2+ building block. The bdc2- ligand linked with the unprecedented [M2(Hox)2(OH)2(H2O)4] units through strong O-H…O hydrogen bonds forming a zigzag chain, which are further connected through π…π interactions between L and bdc2- ligands to form a 3D supramolecular structure. Moreover, elemental analyses, IR, thermogravimetric, PXRD and luminescence have been investigated.  相似文献   

11.
Attempts at synthesizing first-row transition-metal complexes of the 3-hydroxy-4-[(1'S,2'R)-(2-hydroxy-1',2'-diphenylethyl)amino]-3-cyclobutene-1,2-dione ligand in alcoholic solutions resulted in the formation of the monomers [M(NH(2)C(4)O(3))(2)(H(2)O)(4)] [M = Mn (1), Co (2), Ni (3), Cu (4), Zn (5)] instead, as a result of the hydrolysis of the ligand. 1, 2, and 3 are isomorphous (C2/c), with the metal atoms octahedrally coordinated to four aqua and two cis aminosquarate ligands. The copper and zinc complexes (4 and 5) have the same molecular formula as 1-3 but belong to the C2/m and P2(1)/c space groups respectively. 4 has square-pyramidal geometry with trans-oriented aminosquarate ligands in the basal plane; aqua ligands complete the coordination sphere. 5 has octahedral geometry, with four aqua and two trans-oriented aminosquarate ligands. Reaction of aqueous solutions of the anilinosquarate ligand with Ln(NO(3))(3) x xH(2)O produced the eight-coordinate complexes {Sm(mu-C(6)H(5)NHC(4)O(3))(3)(H(2)O)(4) x 3H(2)O}n (6), {[M(mu(2)-C(4)O(4))(H(2)O)(6)][C(6)H(5)NHC(4)O(3)] x 4H(2)O}n [M = Er (7), Yb (8)], {Sm(C(6)H(5)NHC(4)O(3)) (mu(3)-C(4)O(4))(H(2)O)(4) x H(2)O}(n) (9), and {[{(C(6)H(5)NHC(4)O(3))(2)(H(2)O)(5)Yb}(2)(mu-C(4)O(4))] x 4H(2)O}n (10). 7 and 8 are isomorphous with the previously reported analogues Eu, Gd, and Tb ionic polymers. The presence of the squarate ligand in 7-10 is indicative of some form of hydrolysis of the anilinosquarate ligand during their syntheses. However, hydrolysis was not evident in the synthesis of 6. The mechanism for the hydrolysis in the syntheses of 1-5 is apparently different from that for 7-10.  相似文献   

12.
Hydrothermal combination of divalent nickel or cobalt nitrates with the kinked carboxylic acid 4,4'-oxybis(benzoic acid) (H2oba) and the kinked and hydrogen-bonding capable organodiimine 4,4'-dipyridylamine (dpa) under basic conditions has afforded a pair of coordination polymers with a formulation of {[M(oba)(dpa)] x H2O} (M = Ni, 1; M = Co, 2). Both materials were characterized by single-crystal X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The structures of 1 and 2 are isomorphous and manifest intriguing self-catenated two-dimensional layered motifs with very rare non-diamond 66 topology constructed from the direct covalent linkage of [M(oba)]n double helices through [M(dpa)]n undulating chains. Adjacent self-catenated layers engage in mutual interdigitation to form double-layer patterns that further aggregate via supramolecular hydrogen-bonding patterns imparted by the central amine of the dpa ligand. These coordination polymers are very thermally robust, with decomposition occurring only above 400 degrees C.  相似文献   

13.
Carboxylate-bridged complexes of transition metals, M(II)=Mn(II), Fe(II), Co(II), Ni(II), Zn(II), were synthesised by reaction of M(II) salts with dl-malate and L-malate under hydrothermal conditions. These complexes form four series of compounds, which have been fully characterised structurally, thermally and magnetically. The crystal structures of the new chiral compounds, [Mn(L-mal)(H(2)O)] (1), [Fe(L-mal)(H(2)O)] (2), [Co(L-mal)(H(2)O)] (3) and [Zn(L-mal)(H(2)O)] (4) as well as those of the bimetallic analogues [Mn(0.63)Co(0.37)(L-mal)(H(2)O)] (5) and [Mn(0.79)Ni(0.21)(L-mal)(H(2)O)] (6) have been solved by single-crystal X-ray diffraction. The six L-malate monohydrates crystallise in the chiral space group P2(1)2(1)2(1) and consist in a three-dimensional network of metal(II) centres in octahedral sites formed by oxygen atoms. These structures were compared to those of the chiral trihydrate compounds [Co(L-mal)(H(2)O)]2 H(2)O (7), [Ni(L-mal)(H(2)O)]2 H(2)O (8) and [Co(0.52)Ni(0.48)(L-mal)(H(2)O)]2 H(2)O (9), which exhibit helical chains of M(II) centres, and those of dl-malate dihydrates [Co(dl-mal)(H(2)O)]H(2)O (10) and [Ni(dl-mal)(H(2)O)H(2)O (11) and trihydrate [Mn(L-mal)(H(2)O)]2 H(2)O (12) highlighting the great flexibility of the coordination by the malate ligand. UV/Vis spectroscopic results are consistent with octahedral coordination geometry of high-spin transition-metal centres. Extensive magnetic characterisation of each homologous series indicates rather weak coupling interaction between paramagnetic centres linked through carboxylate bridges. Curie-like paramagnetic, antiferromagnetic, ferromagnetic or weak ferromagnetic behaviour is observed and discussed on the basis of the structural features. The bimetallic compounds 5 and 6 represent new examples of chiral magnets.  相似文献   

14.
The employment of a strategy based on nucleophilic substitution, rather than Schiff base condensation, for the preparation of 1,2,4-triazole-based ligands has been investigated and has led to the synthesis of two new ligands, 4-amino-3,5-bis{[N-(2-pyridylmethyl)-N-(4-toluenesulfonyl)amino]methyl}-4H-1,2,4-triazole (TsPMAT, 14) and 4-amino-3,5-bis{[(2-pyridylmethyl)amino]methyl}-4H-1,2,4-triazole (PMAT, 15). These are the first examples of bis(terdentate) ligands incorporating the 1,2,4-triazole unit. TsPMAT (14) forms a dinuclear 2:2 complex with Co(BF4)2.6 H2O even when reacted in a metal-to-ligand molar ratio of 2:1. Similarly, the reaction of PMAT (15) with Mn(ClO4)2.6H2O or M(BF4)2.6 H2O (M=Fe, Co, Ni, Zn) in a ligand-to-metal molar ratio of 1:1 has afforded a series of complexes with the general formula [M(II) (2)(PMAT)2]X4. The metal centres in these complexes of TsPMAT (14) and PMAT (15) are encapsulated by two ligand molecules and doubly bridged by the N2 units of the 1,2,4-triazole moieties, which gives rise to N6 coordination spheres that are strongly distorted from octahedral, as evidenced by the X-ray crystal structure analyses of [Co(II) (2)(TsPMAT)(2)](BF(4))(4)6 MeCN (246 MeCN) and [Fe(II) 2(PMAT)2](BF4)4DMF (27DMF). Studies of the magnetic properties of [Co(II) 2(TsPMAT)2](BF4)4.4 H2O (244 H2O), [Mn(II) 2(PMAT)2](ClO4)4 (26), and [Co(II) 2(PMAT)2](BF4)4 (28) have revealed weak antiferromagnetic coupling (J=-3.3, -0.16, and -2.4 cm(-1), respectively) between the two metal centres in these complexes.  相似文献   

15.
The synthesis, crystal structure, magnetic properties, and single-molecule conductance of two new trinuclear metal string complexes, [Ni(3)(dzp)(4)(NCS)(2)] (2) and [Co(3)(dzp)(4)(NCS)(2)] (3), containing the rigid Hdzp ligand (1, 1,9-diazaphenoxazine) are reported. X-ray structural analyses show that compounds 2 and 3 exhibit smaller torsion angles and longer metal-metal distances than those exhibited by the corresponding dpa(-) analogues (dpa(-) = dipyridylamido anion) due to the rigidity of Hdzp ligands. The longer metal-metal distance observed for 2 and 3 results in variations in their magnetic properties. The exchange interaction (J = -160 cm(-1)) between two high spin (HS) Ni(II) ions in 2 decreases slightly in comparison with those of trinickel dpa(-) analogues. The doublet-quartet gap of 3 is smaller than that of [Co(3)(dpa)(4)(NCS)(2)] (4), which causes compound 3 to show spin-crossover behavior even at low temperature.  相似文献   

16.
The hydrothermal reaction of M(NO3)2.6H2O (M = Ni and Zn) with benzene-1,3,5-tricarboxylic acid (H3btc) and 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) produced the mixed-ligand coordination polymers (MOFs) 3 infinity{[Ni3(mu3-btc)2(mu(4)-btre)2(mu-H2O)2]. approximately 22H2O} (1) and 3 infinity{[Zn3(mu4-btc)2(mu4-btre)(H2O)2].2H2O} (3). The compounds, characterized by single-crystal X-ray diffraction, X-ray powder diffraction and thermoanalysis feature trinuclear secondary building units (SBU) within the three-dimensional frameworks. The trinuclear nickel unit in 1 exhibits an intra-trimer together with some weak inter-trimer antiferromagnetic coupling with J = -13.88(8) cm(-1) from the magnetic susceptibility measurement between 1.9-300 K. The zinc coordination polymer 3 shows a strong fluorescence at 423 nm upon excitation at 323 nm (not seen in the free btre ligand). Compound 3 is thermally robust until 200 degrees C (ambient pressure) where loss of the water molecules starts. Careful control of the dehydration procedure (freeze-drying) for 1 and (heating to 280 degrees C) for allowed for a solid-state reaction with single-crystal-to-single-crystal structural transformations in obtaining the largely dehydrated products 3 infinity{[Ni3(mu2-btc)2(mu4-btre)2(mu-H2O)2(H2O)2].4H2O} (2) and 3 infinity{[Zn3(mu6-btc)2(mu4-btre)2]. approximately 0.67H2O} (4), respectively. In the transformation from 1 to 2 the unit cell volume is reduced to about 60%. The transition from 3 to 4 involves breakage and formation of new Zn-O bonds.  相似文献   

17.
Alkaline-earth metal phosphates containing nitrogen-donor ligands have been prepared by the reaction of alkaline-earth metal acetates M(OAc) 2. xH 2O (M = Mg, Ca, Sr, Ba) with 2,6-diisopropylphenyl phosphate (dippH 2) in the absence and presence of 1,10-phenanthroline (phen). Interaction of strontium or barium acetate with dippH 2 in methanol at room temperature leads to the isolation of ionic phosphates [{M 2(mu-H 2O) 4(H 2O) 10}{dipp} 2].4L [M = Sr, L = CH 3OH ( 1); M = Ba, L = H 2O ( 2)]. The addition of a bidentate nitrogen-donor phen to these reactions leads to the isolation of dinuclear metal phosphates [Mg(dipp)(phen)(CH 3OH) 2] 2 ( 3) and [M(dippH) 2(phen) 2(H 2O)] 2 [M = Ca ( 4), Sr ( 5), Ba ( 6)]. While ionic phosphates 1 and 2 are soluble in water, the predominately covalent dimeric compounds 3- 6 are insoluble in all common solvents including water. The new compounds have been characterized in the solid state by elemental analysis, IR, UV-vis, and emission spectroscopy, and single-crystal X-ray diffraction studies. The cationic part in 1 and 2 is a {M 2(mu-H 2O) 4(H 2O) 10} unit, where each metal ion is surrounded by four bridging and five terminal water molecules as ligands. The dipp anion does not directly bind to the metal ions but is extensively hydrogen-bonded to the cationic unit through the phosphate oxygen and water hydrogen atoms to result in an infinitely layered structure where the hydrophobic aryl group protrudes out of the hydrophilic layer formed by the cationic part and -PO 3 (2-) units. In contrast, compounds 3- 6 are discrete dimeric molecules built around a central M 2O 4P 2 eight-membered ring. While the dippH 2 ligand exists in a doubly deprotonated form in 3, two monodeprotonated dippH 2 ligands are present per metal ion in compounds 4- 6. While 3 prefers only one phen ligand in the metal coordination sphere, two phen ligands chelate each metal ion in 4- 6. The conformations of the eight-membered rings in 3- 6 vary significantly from each other depending on the size of the cation and the coordination number around the metal. Further, intermolecular hydrogen bonding involving the phenanthroline C-H linkages result, in a gridlike structure in 1, one-dimensional chains in isostructural 2 and 3, and a two-dimensional layer arrangement in 4. Compounds 3- 6 are the only examples of alkaline-earth metal phosphate complexes with neutral M-N donor bonds. The thermal behavior of compounds 1- 6 has been examined with the help of thermogravimetric analysis and differential scanning calorimetry and also by bulk thermolysis followed by powder X-ray diffraction measurements. While compounds 1 and 2 yield M 2P 2O 7, decomposition of 4- 6 results in the formation of M(PO 3) 2, consistent with the M-P ratio in the precursor complexes.  相似文献   

18.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

19.
The synthesis, crystal structure and variable-temperature magnetic measurements of the compounds [Mn(mu-ox)(H2O)(7H-pur-kappaN9)]n (1), {[Mn(mu-ox)(H2O)2].(7H-ade).(H2O)}n (2) and {[Cu(mu-ox)(H2O)(7H-ade-kappaN9)][Cu(mu-ox)(mu-H2O)(7H-ade-kappaN9)]. approximately 10/3H2O}n (3), (where ox: oxalato dianion, pur: purine, and ade: adenine) are reported. Compounds 1and 2 contain one-dimensional chains in which manganese(II) atoms are bridged by bis-bidentate oxalato ligands. The distorted octahedral geometry around each metal centre is completed in compound 1 by one water molecule and the imidazole N9 donor site of the purine ligand, which is a rare example of direct binding between the Mn(II) ion and the N donor site of an isolated nucleobase. Unlike 1, the adenine moiety in compound 2 is not bonded to manganese atoms and the metal coordination polyhedron is filled by two water molecules in a cis-arrangement. Its crystal building is constructed from pi-stacked layers of Watson-Crick hydrogen-bonded adenine...(H2O2)...adenine aggregates and zig-zag Mn(II)-oxalato chains held together by means of a strong network of hydrogen bonding interactions. The nucleobase exists in the lattice as the 7H-adenine tautomer which represents an unprecedented solid-state characterization of this minor tautomer as free molecule (without metal coordination) stabilized through non-covalent interactions. Compound consists of two slightly different [Cu(ox)(H2O)(7H-ade-kappaN9)] units in which the nucleobase coordinates through the imidazole N9 atom. The planar complex entities are parallel stacked and joined by means of long Cu-O bonds involving oxygen atoms from the oxalato and the aqua ligands, giving one-dimensional chains with a [4 + 1] square-planar pyramidal and a [4 + 2] octahedral coordination around the metal centre, respectively. Self-assembled process of compound 3 is further driven by an in-plane network of hydrogen bonding interactions to generate a porous 3D structure containing parallel channels filled by guest water molecules. Variable-temperature magnetic susceptibility measurements of all the complexes show the occurrence of antiferromagnetic interactions between the paramagnetic centres. DFT calculations have been performed to check the influence of packing in the stability of the 7H-amino tautomer of 2 and in the complex geometry of 3.  相似文献   

20.
Zou  Xunzhong  Shi  Pingyi  Feng  Ansheng  Mei  Meng  Li  Yu 《Transition Metal Chemistry》2021,46(3):263-272
Transition Metal Chemistry - In this work, two new metal(II) complexes with ligand based on pyridine thiazolone group, [Zn(L)2(TsO)2]2DMF (1), {[Cd(L)(NO3)2H2O)]DMF}n (2) (where...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号