首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compressions are occasionally found during the separation of DNA sequencing fragments, particularly in G/C-rich regions and in gels operated at room temperature. Addition of at least 10% formamide to urea/polyacrylamide sequencing gels improves the denaturing capacity of the gel, minimizing compressions. Addition of 20% or more formamide decreases the separation rate, theoretical plate count, and resolution for normally migrating fragments. An optimum concentration of 10% formamide improves resolution of compressed regions without degrading the other characteristics of the gel. Operation of gels at room temperature simplifies the engineering associated with automated sequencers based on capillary gel electrophoresis.  相似文献   

2.
Silver staining of DNA in polyacrylamide gels   总被引:7,自引:0,他引:7  
Nucleic acids can be detected at the picogram level using a quick and simple silver staining method (2). Using very thin polyesterbacked polyacrylamide gels, a further simplified protocol was compared to other widely used silver staining procedures. The improved protocol described here was the most sensitive, the fastest to perform, and had relatively few steps and reagents. This method also produced the least number of staining artifacts and offered images of high contrast.  相似文献   

3.
Stellwagen NC 《Electrophoresis》2000,21(12):2327-2334
Dimers, trimers and higher multimers of two 147-base pair restriction fragments called 12 A and 12B, obtained from the MspI digest of plasmid pBR322, migrate as sharp bands in agarose and dilute polyacrylamide gels, indicating that they are homogeneous in molecular weight. However, the electrophoretic bands corresponding to multimers of the curved fragment 12A are split into sharp sub-bands in more concentrated polyacrylamide gels. The relative intensities and spacing of the sub-bands depend on the number of monomers in the multimer, the pH of the buffer, and the presence or absence of divalent cations in the solution. Since band splitting is not observed for the normal 12B multimers under any gel-running conditions, the sub-bands observed for multimers of the curved fragment 12A must be attributed to conformational isomers which are in slow exchange on the electrophoretic time scale. Band splitting is also observed for multimers of a curved DNA fragment containing the kinetoplast bending locus and for plasmid pUC19 linearized by digestion with certain restriction enzymes. Plasmid pUC19 contains two nearly equidistant regions of intrinsic curvature (Strutz, K., Stellwagen, N. C., Electrophoresis 1996, 17, 989-995). Hence, DNA molecules containing two or more regions of curvature exist as discrete subpopulations of conformational isomers which can be observed as separate bands migrating in polyacrylamide gels.  相似文献   

4.
We have examined the effects of pulsed electric fields on the separation of single-stranded DNA molecules in polyacrylamide sequencing gels. Using different electric field pulsing regimens, the mobilities of single-stranded DNA molecules can be retarded or increased as compared to conventional electrophoresis. These results indicated that pulsed field techniques can be applied to gel electrophoresis of small single-stranded DNA molecules.  相似文献   

5.
A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.  相似文献   

6.
An optimal method of DNA silver staining in polyacrylamide gels   总被引:6,自引:0,他引:6  
Ji YT  Qu CQ  Cao BY 《Electrophoresis》2007,28(8):1173-1175
A silver staining technique has widely been used to detect DNA fragments with high sensitivity on polyacrylamide gels. The conventional procedure of the silver staining is tedious, which takes about 40-60 min and needs five or six kinds of chemicals and four kinds of solutions. Although our previous improved method reduced several steps, it still needed six kinds of chemicals. The objective of this study was to improve further the existing procedures and develop an optimal method for DNA silver staining on polyacrylamide gels. The novel procedure could be completed with only four chemicals and two solutions within 20 min. The steps of ethanol, acetic acid, and nitric acid precession before silver impregnation have been eliminated and the minimal AgNO3 dose has been used in this up-to-date method. The polyacrylamide gel of the DNA silver staining displayed a golden yellow and transparent background with high sensitivity. The minimum 0.44 and 3.5 ng of DNA amount could be detected in denaturing and nondenaturing polyacrylamide gel, respectively. This result indicated that our optimal method can save time and cost, and still keep a high sensitivity for DNA staining in polyacrylamide gels.  相似文献   

7.
Han YC  Teng CZ  Hu ZL  Song YC 《Electrophoresis》2008,29(6):1355-1358
DNA silver staining has widely been used to detect DNA fragments in polyacrylamide gels with high sensitivity. We developed an optimal method for DNA silver staining on polyacrylamide gels. The novel procedure can be completed within 10 min instead of over 20 min with the conventional methods. The sensitivity is significantly improved by the silver-ion sensitizer (Eriochrome black T (EBT)) and the minimum of 0.11 and 1.75 ng of DNA amount can be detected in denaturing and nondenaturing polyacrylamide gel, respectively. Compared with the conventional silver staining methods, the improved optimal method can save time and display high sensitivity, color uniformity, and long storage time of the staining gels.  相似文献   

8.
Qu L  Li X  Wu G  Yang N 《Electrophoresis》2005,26(1):99-101
DNA silver staining is widely used to detect DNA fragment in polyacrylamide gel with high sensitivity. Conventional procedures of the silver staining involve several steps, which take about 40 min to 2 h in total. To improve the efficiency of DNA silver staining, a more efficient protocol is developed in this study. The procedure comprises only four steps including impregnating, rinsing, developing, and stopping, and could be completed within 20 min. Nitric acid and ethanol in the silver-impregnation step of the new procedure eliminates the need for prior treatment of gels with a fixing solution and following rinse prior to impregnation with silver. The procedure has high sensitivity and long storage lifetime. The minimum detectable mass of DNA is 0.44 and 3.5 ng in denaturing and nondenaturing polyacrylamide gel, respectively.  相似文献   

9.
Lo RC  Ugaz VM 《Electrophoresis》2006,27(2):373-386
Considerable effort has been directed toward optimizing performance and maximizing throughput in ssDNA electrophoresis because it is a critical analytical step in a variety of genomic assays. Ultimately, it would be desirable to quantitatively determine the achievable level of separation resolution directly from measurements of fundamental physical properties associated with the gel matrix rather than by the trial and error process often employed. Unfortunately, this predictive capability is currently lacking, due in large part to the need for a more detailed understanding of the fundamental parameters governing separation performance (mobility, diffusion, and dispersion). We seek to address this issue by systematically characterizing electrophoretic mobility, diffusion, and dispersion behavior of ssDNA fragments in the 70-1,000 base range in a photopolymerized cross-linked polyacrylamide matrix using a slab gel DNA sequencer. Data are collected for gel concentrations of 6, 9, and 12%T at electric fields ranging from 15 to 40 V/cm, and resolution predictions are compared with corresponding experimentally measured values. The data exhibit a transition from behavior consistent with the Ogston model for small fragments to behavior in agreement with the biased reptation model at larger fragment sizes. Mobility data are also used to estimate the mean gel pore size and compare the predictions of several models.  相似文献   

10.
In DNA sequencing, single-stranded DNA fragments are separated by gel electrophoresis. This separation is based on a sieving mechanism where DNA fragments are retarded as they pass through pores in the gel. In this paper, we present the mobility of DNA sequencing fragments as a function of temperature; mobility is determined in 4% T LongRanger gels at an electric field of 300 V/cm. The temperature dependence is compared with the predictions of the biased reptation model. The model predicts that the fragment length for the onset of biased reptation with stretching increases with the square of temperature; the data show that the onset of biased reptation with stretching decreases with temperature. Biased reptation fails to model accurately the temperature dependence of mobility. We analyzed the data and extracted the activation energy for passage of sequencing fragments through the gel. For fragments containing less than ca. 200 bases, the activation energy increases linearly with the number of bases at a rate of 25 J/mol per base; for longer fragments, the activation energy increases at a rate of 6.5 J/mol per base. This transition in the activation energy presumably reflects a change in conformation of the DNA fragments; small fragments exist in a random coil configuration and larger fragments migrate in an elongated configuration.  相似文献   

11.
Electrophoretic mobilities of DNA molecules ranging in length from 200 to 48 502 base pairs (bp) were measured in agarose gels with concentrations T = 0.5% to 1.3% at electric fields from E = 0.71 to 5.0 V/cm. This broad data set determines a range of conditions over which the new interpolation equation nu(L) = (beta+alpha(1+exp(-L/gamma))(-1) can be used to relate mobility to length with high accuracy. Mobility data were fit with chi(2) > 0.999 for all gel concentrations and fields ranging from 2.5 to 5 V/cm, and for lower fields at low gel concentrations. Analyses using so-called reptation plots (Rousseau, J., Drouin, G., Slater, G. W., Phys. Rev. Lett. 1997, 79, 1945-1948) indicate that this simple exponential relation is obeyed well when there is a smooth transition from the Ogston sieving regime to the reptation regime with increasing DNA length. Deviations from this equation occur when DNA migration is hindered, apparently by entropic-trapping, which is favored at low fields and high gel concentrations in the ranges examined.  相似文献   

12.
An original apparatus based on laser-induced fluorescence detection is presented. One lane migration combined to four equidistant detection points allows the study of the dynamics of DNA bands during electrophoresis. We focus this article on the study of the mobility of DNA sequencing fragments as a function of temperature; mobility is determined in 4% T, 5% C and 4.3% T, 5% C cross-linked polyacrylamide gels at an electric field of 45 V/cm [T=(g acrylamide+g N,N'-methylenebisacrylamide)/100 ml solution; C=g N,N'-methylenebisacrylamide/% T]. Activation energy has been investigated under these experimental conditions with a temperature varying from 25 to 50 degrees C. The activation energy for migration through the cross-linked polyacrylamide gel decreases with fragment length under our experimental conditions and it varies along the migration.  相似文献   

13.
The mobilities of normal and anomalously migrating DNA fragments were determined in polyacrylamide gels of different acrylamide concentrations, polymerized with 3% N,N'-methylenebisacrylamide as the crosslinker. The DNA samples were a commercially available 123-bp ladder and two molecular weight ladders containing multiple copies of two 147-base pair (bp) restriction fragments, obtained from the MspI digestion of plasmid pBR322. One of the 147 bp fragments is known to migrate anomalously slowly in polyacrylamide gels. Ferguson plots were constructed for all multimer ladders, using both absolute mobilities and relative mobilities with respect to the smallest DNA molecule in each data set. If the retardation coefficients were calculated from the relative mobilities, and the rms radius of gyration was used as the measure of DNA size, the Ogston equations were obeyed and the gel fiber parameters could be calculated. The effective pore sizes of the gels were estimated from the gel concentration at which the mobility of a given DNA molecule was reduced to one-half its mobility at zero gel concentration. The estimated pore radii ranged from approximately 130 nm for 3.5% gels to approximately 70 nm for 10.5% gels. These values are much larger than the pore sizes previously determined for the polyacrylamide matrix.  相似文献   

14.
Lipopolysaccharide (LPS) and lipooligosaccharide (LOS) are important antigenic and integral components of the outer membrane of Gram-negative bacteria. Alteration or heterogeneity of LPS/LOS structure is most often assessed by alteration of electrophoretic band profiles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In order to discern minor differences in the electrophoretic profile of closely spaced bands, particularly the low molecular weight bands of LOS, optimum resolution is required. Unfortunately, many publications of LPS/LOS in polyacrylamide gels show a diffuse, smeared pattern without discernible bands. We report here a formulation for polyacrylamide gels that reproducibly yields LPS/LOS bands with sharp resolution. A key feature of this formulation is the use of a separate comb gel containing electrode buffer layered on top of the conventional stacking gel.  相似文献   

15.
Ugaz VM  Burke DT  Burns MA 《Electrophoresis》2002,23(16):2777-2787
We use microfabricated gel electrophoresis devices incorporating integrated on-chip electrodes, heaters, and temperature sensors to measure diffusion and dispersion of single-stranded DNA fragments in cross-linked and uncross-linked polyacrylamide gels. The microdevice format allows a complete set of diffusion and dispersion data to be collected in approximately one hour. These results are compared with corresponding data obtained in a macroscale DNA sequencer, and the effects of gel composition and initiation chemistry are explored. Although the diffusion and dispersion data exhibit similar qualitative trends both on chip and on the macroscale, the magnitudes of the coefficients measured in the microdevice are somewhat higher. This discrepancy is likely due to altered polymerization kinetics arising as a consequence of using a UV-initiated polymerization chemistry to cast the on-chip gels as opposed to the standard chemical polymerization employed on the macroscale. We also find that reductions in the magnitudes of diffusion and dispersion coefficients are achieved at higher polymer concentrations and at operating temperatures in the vicinity of 50 degrees C. Finally, we find that cross-linked polyacrylamide gels yield significantly lower diffusion and dispersion coefficients than linear polyacrylamide. These findings can be used to identify rational strategies to improve separation performance in both micro- and macroscale gel electrophoresis systems.  相似文献   

16.
Wang J  Ugaz VM 《Electrophoresis》2006,27(17):3349-3358
Photopolymerized cross-linked polyacrylamide hydrogels are attractive sieving matrix formulations for DNA electrophoresis owing to their rapid polymerization times and the potential to locally tailor the gel pore structure through spatial variation of illumination intensity. This capability is especially important in microfluidic systems, where photopolymerization allows gel matrices to be precisely positioned within complex microchannel networks. Separation performance is also directly related to the nanoscale gel pore structure, which is in turn strongly influenced by polymerization kinetics. Unfortunately, detailed studies of the interplay among polymerization kinetics, mechanical properties, and structural morphology are lacking in photopolymerized hydrogel systems. In this paper, we address this issue by performing a series of in situ dynamic small-amplitude oscillatory shear measurements during photopolymerization of cross-linked polyacrylamide electrophoresis gels to investigate the relationship between rheology and parameters associated with the gelation environment including UV intensity, monomer and cross-linker composition, and reaction temperature. In general, we find that the storage modulus G' increases with increasing initial monomer concentration, cross-linker concentration, and polymerization temperature. The steady-state value of G', however, exhibits a more complex dependence on UV intensity that varies with gel concentration. A simple model based on rubber elasticity theory is used to obtain estimates of the average gel pore size that are in surprisingly good agreement with corresponding data obtained from analysis of DNA electrophoretic mobility in gels cast under identical polymerization conditions.  相似文献   

17.
S Diekmann 《Electrophoresis》1989,10(5-6):354-359
Curved DNA fragments have a reduced electrophoretic mobility in polyacrylamide gels. The retardation in gels is extremely sensitive to small structural variations which influence the DNA helix axis. This gel assay can also be used to detect very small structural variations in DNA sequences which are not curved: The noncurved sequences of interest can be combined with curved stretches in phase with the helix turn. Using such sequence constructions, even subtle influences on the DNA helix axis can be detected. Experiments of this kind allow the determination of a relative order of sequence-specific DNA twist and wedge angles.  相似文献   

18.
Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >106 for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5–20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process.  相似文献   

19.
An improved silver–ammonia staining method for DNA on polyacrylamide gels is described. In this method, staining of DNA using silver–ammonia complex allows high sensitivity, low cost, low toxicity, and simple protocol without requiring fixation and sensitization steps. The protocol takes less than 40 min to complete, with a detection limit of 1.5 pg of single DNA band on polyacrylamide gels, approximately 30‐fold higher than that of original silver–ammonia staining method. Furthermore, this novel technique not only exhibits high sensitivity for large DNA fragment, but also shows a better trend to detect low‐base‐pair DNA compared with other silver staining methods.  相似文献   

20.
The mobilities of various DNA fragments in two normally migrating molecular weight ladders were studied in polyacrylamide gels containing different concentrations of the crosslinker N,N'-methylenebisacrylamide (Bis). The acrylamide concentration ranged from 2.5-10.5%T (w/v); the Bis concentration ranged from 0.5-10%C (w/w), with respect to total acrylamide. Ferguson plots were constructed for each of the DNA fragments in gels of each composition. The Ferguson plots of the different multimers in each molecular weight ladder were nearly parallel in gels containing 0.5-3%C, converged close to a common intercept at zero gel concentration in gels containing 4%C, and crossed at approximately 1.5%T in gels containing 5 and 10%C. If the mobilities observed for the different DNA fragments at zero gel concentration were also extrapolated to zero DNA molecular weight, a common limiting mobility was observed in gels of all crosslinker concentrations. This limiting mobility was approximately equal to the free solution mobility of DNA. The effective pore radius of each gel was estimated from Ferguson plots based on relative mobilities, using the mobility of the smallest DNA fragment in each molecular weight ladder as the reference mobility. The calculated gel pore radii ranged from 142 nm to 19 nm, respectively, for gels containing 4.6%T, 1.5%C, and 10.5%T, 5 or 10%C. These pore radii are an order of magnitude larger than previously accepted values, but are consistent with scanning electron microscope measurements (Rüchel, R., et al., J. Chromatogr. 1978, 42, 77-90).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号