首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Starting from the versatile 4-bromopyrido[24]crown-8 building block, novel ditopic and tritopic receptors have been synthesized and shown to be appropriate hosts for bis(4-formylbenzyl)ammonium hexafluorophosphate. Association constants (per binding site) for the corresponding [3]- and [4]pseudorotaxanes, assembled from these components, were determined to be 2753  M?1 and 723  M?1, respectively. Mechanical bond formation was attempted utilizing dynamic imine bond formation between the formyl groups of the bound dibenzylammonium threads and p-phenylenediamine.  相似文献   

2.
Carbazole-based diaza[7]helicene substituted by thiophene groups, 2,12-dithiophene-5,15-dihexyl-5,15-diaza[7]helicene (6), was synthesised successfully and confirmed by 1H NMR, 13C NMR, High Resolution Mass Spectrometry, Time of Flight Mass Spectrometry. Compound 6 exhibited good solubility and excellent thermal stability with no melting point and a high decomposition temperature of 453.64 °C. A doped device with a structure of ITO/NPB (50 nm)/CBP: 10% 6 (30 nm)/Bphen (20 nm)/Mg:Ag (150 nm)/Ag (50 nm) emitted the blue light at 460 nm with Commission Internationale de LEclairage (CIE) coordinate of (0.176, 0.26). The maximum brightness and external quantum efficiency (EQE) were 2306 cd m?2 and 0.41%, respectively.  相似文献   

3.
With the biggest cavity in the cucurbit[n]urils (CB[n]s) family, CB[10] has shown its unique molecular recognition properties. This review gives a brief summary of the research progresses in the CB[10]-based chemistry, involving its purification and applications in fields such as molecular recognition and molecular assembly.  相似文献   

4.
[131I]5-HTP features predominant necrosis avidity and could rapidly visualize necrotic myocardium at 3 h p.i. The necrosis avidity mechanism of [131I]5-HTP may be attributed to its interactions with E-DNA in the necrotic tissues.  相似文献   

5.
Two novel bent-shaped thienoacenes, naphtho[2,3-b]naphtho[2′,3′:4,5]thieno[3,2-d]thiophene (bent-DNTT) and anthra[2,3-b]anthra[2′,3′:4,5]thieno[3,2-d]thiophene (bent-DATT) were synthesized from thieno[2,3-b]thiophene and their corresponding aromatic anhydrides by three steps: Friedel–Crafts acylation, acid-promoted cyclization, and reductive aromatization. The structural curvature improved the solubility of these thienoacenes in organic solvents. The bent-DNTT based FET device was fabricated by the spin-coating method. The device exhibited p-type characteristics with a mobility of 5.1 × 10?5 cm2 V?1 s?1. Its thin-film structure was fully characterized as an edge-on orientation with large intermolecular orbital coupling.  相似文献   

6.
The single crystal analysis of the as-prepared 8,16-dimesityltetraceno[2,1,12,11-opqra]tetracene (DMTA) suggests that the parent bistetracene backbone is almost in a plane without any intermolecular p-stacking interaction. The fabricated devices based on DMTA as an emitter exhibit a maximum brightness of 632 cd/m2 at 14.7 V with the CIE coordinate of (0.623, 0.349).  相似文献   

7.
Tellurium (IV) complexes with pyridine-2,6-dicarboxylate ligand were synthesized by slow evaporation from aqueous solutions yielding a new compound: [(C7H6NO4)2TeBr6·4H2O]. The structure of this compound was solved and refined by single-crystal X-ray diffraction. The compound is centrosymmetric P21/c (N°: 14) with the parameters a = 8.875(5) Å, b = 15.174(5) Å, c = 10.199(5) Å, β = 94.271° (5) and Z = 2. The structure consists of isolated H2O, isolated [TeBr6]2? octahedral anions and (pyridine-2,6-dicarboxylate) [C7H6NO4]+ cations. The stability of the structure was ensured by ionic and hydrogen bonding contacts (N–H?Br and O–H?Br) and Van-Der Walls interaction. The thermal decomposition of the compound was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The FTIR and Raman spectroscopy at different temperatures confirm the existence of vibrational modes that correspond to the organic, inorganic and water molecular groups. Additionally, the UV–Vis diffuse reflectance spectrum was recorded in order to investigate the band gap nature. The measurements show that this compound exhibits a semiconducting behavior with an optical band gap of 2.66 eV.  相似文献   

8.
A series of 6A,6X-diguanidio-g-cyclodextrins (CDs) were synthesized as chiral hosts for mediating the enantiodifferentiating[4+4] photocyclodimerization of 2-anthracenecarboxylic acid (AC). Variation of the temperature and the ammonia contents led to greatly enhanced head-to-head photodimers 3 and 4, companying by inversion of product chirality.  相似文献   

9.
Picolyl, pyridine, and methyl functionalized N-heterocyclic carbene iridium complexes [Cp1Ir(C^N)Cl]Cl (4, C^N = 3-Methyl-1-picolyimidazol-2-ylidene), [Cp1Ir(C^N)Cl][Cp1IrCl3] (5), [Cp1Ir(C-N)Cl]Cl (6, C-N = 3-Methyl-1-pyridylimidazol-2-ylidene) and [Cp1Ir(L)Cl2] (7, L = 1,3-dimethylimidazol-2-ylidene) have been synthesized by transmetallation from Ag(I) carbene species, and characterized by 1H NMR, 13C NMR spectra and elemental analyses. The molecular structures of 5–7 have been confirmed by X-ray single-crystal analyses. The iridium carbene complexes 4 and 6 show moderate catalytic activities (3.03 × 105 g PNB (mol Ir)?1 h?1 and 1.70 × 106 g PNB (mol Ir)?1 h?1) for the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as co-catalyst. The produced polynorbornene have been characterized by IR, 1H NMR and 13C NMR spectra, showing it follows the vinyl-addition-type of polymerization.  相似文献   

10.
The binding of the polyaromatic guest, 3,6-diaminoacridine (Proflavine) to cucurbit[n]uril (CB[n]) where n = 6, 7 and 8 has been studied by fluorescence spectrophotometry and binding constants determined using a least squares fitting method. Titration of CB[8] into a solution of Proflavine results in a 95% decrease in fluorescence up to a CB[8] to Proflavine ratio of 2:1. From the induced fluorescence spectra a binding constant of 1.9 × 107 M? 1 was determined. When Proflavine is titrated into a solution of CB[8] a similar binding constant is calculated (1.3 × 107 M? 1). Titration of CB[6] into a solution of Proflavine yields a decrease in fluorescence of 18–20%, but no binding is observed beyond what is seen within experimental error. Finally, titration of CB[7] into a solution of Proflavine results in an increase in fluorescence (32%) and a blue-shift of the emission wavelength from 509 nm to 485 nm. From the induced fluorescence spectra a binding constant of 1.65 × 107 M? 1 was determined. From 1H NMR it appears that the decrease in fluorescence for Proflavine with CB[6] and CB[8] is due to collisional quenching, whereas the increase in fluorescence with CB[7] may be due to rotational restriction.  相似文献   

11.
A novel sensor based on a screen-printed electrode (SPE) modified with a stable dispersion of commercially available carbon black (CB) N220 was developed. This probe showed significantly enhanced electrochemical activity relative to a bare SPE when tested with ferricyanide, epinephrine, norepinephrine, benzoquinone and NADH. When challenged in amperometric batch mode with NADH, the response was stable and revealed a linear dependence up to 2·10?4 mol L?1 with a detection limit of 3·10?7 mol L?1. The analytical performance, coupled with the low cost of the CB nanomaterial, suggests that this sensor holds promise for electrochemical applications.  相似文献   

12.
An efficient synthesis of 2-amino-1-R-[1,2,4]triazolo[1,5-a]- pyrimidinium or 3-amino-2-R-[1,2,4]triazolo[4,3-a]pyrimidi- nium chloride derivatives by heterocyclization of 3,5-diamino- 1-R-1,2,4-triazoles (R = Alk or Ar) with pentane-2,4-diones was developed. The process is promoted by chlorotrimethyl- silane which plays the dual role of carbonyl-activating agent and water scavenger.  相似文献   

13.
Inclusion of a biological photosensitizer and prototype of β-carbolines, norharmane (NHM), into the cavity of cucurbit[7]uril (CB[7]) has been investigated for the first time, by using 1H NMR and UV–visible spectroscopy, and ab initio calculations. Protonated NHM forms a very stable host–guest complex with CB[7] in aqueous solution, with a binding constant of (9.0 ± 0.5) × 104 M?1. The encapsulation of NHM into CB[7] has driven the prototropic equilibrium of NHM to protonated NHM (NHMH+) at neutral pH. A pH titration for the host–guest complex revealed a moderate shift of the acid–base equilibrium in the ground-state (from 7.2 to 7.9), which may be caused by the low polarity microenvironment of the CB[7] cavity. The CB[7] provides a binding pocket for the hydrophobic molecule, and the polar, carbonyl-lined portals offering an anchoring site for the positive charge of the cationic species NHMH+.  相似文献   

14.
The one-pot, regioselective synthesis of branched diacid derivatives – diesters, dithioesters, diamides [YC(O)O(CH2)mC(Me)2OC(O)Y] and diketones of aromatic and heteroaromatic series, [ArCO(CH2)mC(Me)2C(O)Ar,) from available linear acyl halides, CnH2 n+1COCl (n = 7–9), CO (1 at) and various nucleophiles (YH = EtOH, CF3CH2OH, H(CF2)2CH2OH, thiophene, anisole, Et2NH, aniline, and morpholine) in the presence of the superelectrophilic complex, CBr4·2AlBr3 has been performed for the first time. This method provides access to new and promising groups of dicarboxylic acid derivatives and diketones containing quaternary carbon atom and remote functional groups.  相似文献   

15.
The potential use of cucurbit[7]uril (CB[7]) as an excipient in oral formulations for improved drug physical stability or for improved drug delivery was examined with the antituberculosis drugs pyrazinamide (pyrazine-2-carboxamide) and isoniazid (isonicotinohydrazide). Both drugs form 1:1 host–guest complexes with CB[7] as determined by 1H nuclear magnetic resonance spectrometry, electrospray ionisation mass spectrometry and molecular modelling. Drug binding is stabilised by hydrophobic effects between the pyridine and pyrazine rings of isoniazid and pyrazinamide, respectively, to the inside cavity of the CB[7] macrocycle as well as hydrogen bonds between the hydrazide and amide groups of each drug to the CB[7] carbonyl portals. At pH 1.5, isoniazid binds CB[7] with a binding constant of 5.6 × 105 M?1, whilst pyrazinamide binds CB[7] at pH 7 with a much smaller binding constant (4.8 × 103 M?1). Finally, CB[7] prevents drug melting through encapsulation. Where previously pyrazinamide displays a typical melting point of 189 °C and isoniazid 171 °C, by differential scanning calorimetry, no melting or degradation at temperatures up to 280 °C is observed for either drug once bound by CB[7].  相似文献   

16.
Development of fluorescent chemical sensors for fluoride is important due to increased use of fluoride in environment. A fused bis[2-(2′-hydroxyphenyl)benzoxazole] 5, which is capable of giving ESIPT emission, is found to be a useful fluorescent sensor for fluoride detection. Upon binding to fluoride, bis(HBO) 5 shows a large spectral shift in both fluorescence (from ~490 nm to ~440 nm) and absorption (from 353 nm to 392 nm). In comparison with the isomeric 4, bis(HBO) 5 dramatically improves the sensitivity in fluoride binding (by an order of magnitude), revealing a large impact of regiochemistry on the sensor performance. 1H NMR has been used to study the fluoride binding, and to correlate the intramolecular hydrogen bonding with the fluoride response. Sensitivity of 5 towards fluoride is as low as 10?5 M. Bis(HBO) 5 also showed excellent selectivity towards fluoride while being silent to other anions (Cl?, Br?, HS? and PO43?), thus making 5 a potentially useful probe.  相似文献   

17.
The effects of two eco-friendly solvents, 2-methyltetrahydrofuran (MeTHF) and cyclopentyl methyl ether (CPME), on the enzyme activity and enantioselectivity of Novozym 435, Candida rugosa lipase (CRL), Porcine pancreas lipase (PPL), Lipase AK, Lipase PS, and Lipozyme, a series of commercial lipases, in the enantioselective transesterfications of racemic menthol, racemic sulcatol and racemic α-cyclogeraniol were studied. Vinyl acetate was chosen as the acyl donor and the reactions were carried out at water activity 0.06. The activity of lipases in CPME was similar to that observed in other largely employed organic solvents [toluene and tert-butyl methyl ether (MTBE)], and was slightly lower in MeTHF. However, for most of the lipases tested, the enantioselectivity was higher in the eco-friendly solvents. Lipase AK exhibited a high enantioselectivity (E = 232) for the resolution of racemic menthol but the reaction rate was low. Lipase formulation (the enzyme was frozen and lyophilized in potassium phosphate buffer without and with 5% (w/v) of sucrose, d-mannitol, or methoxy poly(ethylene glycol)) was tested with this lipase in order to improve its activity, which increased up to 4.5 times, compared to the untreated enzyme. CALB was found to be a useful biocatalyst for the resolution of racemic sulcatol, where high activity and enantioselectivity were obtained (E  1000). For the resolution of the racemic primary alcohol α-cyclogeraniol, most of the lipases tested were active but not enantioselective, except lipase PS which displayed a moderate enantioselectivity (E = 19). The effect of the presence of a low percentage of two ionic liquids (ILs) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]) (5% (v/v)) and 1-Butyl-3-methylimidazoliumtetrafluoroborate ([BMIM][BF4]) (1% (v/v)) in the medium was also investigated. Only in the case of CRL the ILs slightly increased the enantioselectivity from E = 91 to E = 103 and E = 120 for [BMIM][TFSI] and [BMIM][BF4], respectively. However, in all cases ILs caused a decrease of enzyme activity.  相似文献   

18.
The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M22-NO)]; (c) threefold nitrosyl bridges, [M33-NO)]; (d) σ/π-dihaptonitrosyls or “side-on” nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls).Typical ranges for the values of internuclear N–O and M–N bond-distances and M–N–O bond-angles for linear nitrosyls are: 1.14–1.20 Å/1.60–1.90 Å/180–160° and for bent nitrosyls are 1.16–1.22 Å/1.80–2.00 Å/140–110°. The [M22-NO)] bridges have been divided into those that contain one or several metal–metal bonds and those without a formal metal/metal bond (M?M). Typical ranges for the M–M, N–O, M–N bond distances and M–N–M bond angles for the normal twofold NO bridges are: 2.30–3.00 Å/1.18–1.22 Å/1.80–2.00 Å/90–70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10–3.40 Å/1.20–1.24 Å/1.90–2.10 Å/130–110°. In both situations the N–O vector is approximately at right angle to the M–M (or M?M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M3-plane of a cluster compound. Characteristic values for the N–O and M–N bond-distances of these NO bridges are: 1.24–1.28 Å/1.80–1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis.The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the “effective atomic number (EAN)” or “18-electron” rule. In the paucity of enough vibrational spectroscopic data from complexes with only nitrosyl ligands, it turned out to be very advantageous to use wavenumbers from the spectra of uncharged and saturated nitrosyl/carbonyl metal complexes as references, because the presence of a carbonyl ligand was found to be neutral in its effect on the ν(NO)-values. The wide wavenumber range found for the ν(NO) values of linear MNO complexes are then presented in terms of the estimated effects of net ionic charges, or of electron-withdrawing or electron-donating ligands bonded to the same metal atom. Using this approach we have found that: (a) the effect for a unit positive charge is [plus 100 cm?1] whereas for a unit negative charge it is [minus 145 cm?1]. (b) For electron-withdrawing co-ligands the estimated effects are: terminal CN [plus 50 cm?1]; terminal halogens [plus 30 cm?1]; bridging or quasi-bridging halogens [plus 15 cm?1]. (c) For electro donating co-ligands they are: PF3 [plus 10 cm?1]; P(OPh)3 [?30 cm?1]; P(OR)3 (R = alkyl group) [?40 cm?1]; PPh3 [?55 cm?1]; PR3 (R = alkyl group) [?70 cm?1]; and η5-C5H5 [?60 cm?1]; η5-C5H4Me [?70 cm?1]; η5-C5Me5 [?80 cm?1]. These values were mostly derived from the spectra of nitrosyl complexes that have been corrected for the presence of only a single electronically-active co-ligand. After making allowance for ionic charges or strongly-perturbing ligands on the same metal atom, the adjusted ‘neutral-co-ligand’ ν(NO)*-values (in cm?1) are for linear nitrosyl complexes with transition metals of Period 4 of the Periodic Table, i.e. those with atomic orbitals (…4s3d4p): [ca. 1750, Cr(NO)]; [1775,Mn(NO)]; [1796,Fe(NO)]; [1817,Co(NO)]; [ca. 1840, Ni(NO)]. Period 5 (…5s4d5p): [1730 Mo(NO)]; [—, Tc(NO)]; [1745,Ru(NO)]; [1790,Rh(NO)]; [ca. 1845, Pd(NO)]. Period 6 (…6s4f5d6p), [1720,W(NO)]; [1730,Re(NO)]; [1738,Os(NO)]; [1760,Ir(NO)]; [—, Pt] respectively. Environmental differences to these values, e.g. data taken in polar solutions or in the crystalline state, can cause ν(NO)* variations (mostly reductions) of up to ca. 30 cm?1.Three spectroscopic criteria are used to distinguish between linear and bent NO groups. These are: (i) the values of ν(14NO) themselves, and (ii) the isotopic band shift – (IBS) – parameter which is defined as [ν(14NO)–ν(15NO)], and, (iii) the isotopic band ratio – (IBR) – given by [ν(15NO/ν14NO)]. The former is illustrated with the ν(14NO)-data from trigonal bipyramidal (TBP) and tetragonal pyramidal (TP) structures of [M(NO(L)4] complexes (where M = Fe, Co, Ru, Rh, Os, Ir and L = ligand). These values indicate that linear (180–170°) and strongly bent (130–120°) NO groups in these compounds absorb over the 1862–1690 cm?1 and 1720–1525 cm?1-regions, respectively. As was explicitly demonstrated for the linear nitrosyls, these extensive regions reflect the presence in different complexes of a very wide range of co-ligands or ionic charges associated with the metal atom of the nitrosyl group. A plot of the IBS parameter against M–N–O bond-angle for compounds with general formulae [M(NO)(L)y] (y = 4, 5, 6) reveals that the IBS-values are clustered between 45 and 30 cm?1 or between 37 and 25 cm?1 for linear or bent NO groups, respectively. A plot of IBR shows a less well defined pattern. Overall it is suggested that bent nitrosyls absorb ca. 60–100 cm?1 below, and have smaller co-ligand band-shifts, than their linear counterparts.Spectroscopic ν(NO) data of the bridging or other types of NO ligands are comparatively few and therefore it has not been possible to give other than general ranges for ‘neutral co-ligand’ values. Moreover the bridging species data often depend on corrections for the effects of electronically-active co-ligands such as cyclopentadienyl-like groups. The derived neutral co-ligand estimates, ν(NO)*, are: (a) twofold bridged nitrosyls with a metal–metal bond order of one, or greater than one, absorb at ca. 1610–1490 cm?1; (b) twofold bridged nitrosyl ligands with a longer non-bonding M?M distance, ca. 1520–1490 cm?1; (c) threefold bridged nitrosyls, ca. 1470–1410 cm?1; (d) σ/π dihaptonitrosyl, [M(η2-NO)], where M = Cr, Mn and Ni; ca. 1490–1440 cm?1. Isonitrosyls, from few examples, appear to absorb below ca. 1100 cm?1.To be published DFT calculations of the infrared and Raman spectra of complexes with formulae [M(NO)4?n(CO)n] (M = Cr, Mn, Fe, Co, Ni, and n = 0, 1, 2, 3, 4, respectively) are used as models for the assignments of the ν(MN) and δ(MNO) bands from more complex metal nitrosyls.  相似文献   

19.
The chiral N-heterocyclic carbene-catalyzed [4 + 2] annulation of α-chloroaldehydes and aurones was developed, giving the corresponding benzofuran–fused dihydropyranones in good to high yields with good cis-selectivities and excellent enantioselectivities. The catalytic cycle features with the generation of enolate from chloroaldehdye and its following [4 + 2] cycloaddtion with aurones.  相似文献   

20.
We have synthesized and characterized Ag NPs decked GO composite and studied its role as reusable catalyst for the ‘ON WATER’ chemoselective synthesis of pyranodipyrazolones via the reaction of different carbonyl compounds with 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. This method illustrates significant selectivity for pyranodipyrazolones over arylmethylene bispyrazolols and arylmethylenepyrazolones. Synergistic effect of heterogenic nature of water with reactants and Ag NPs/GO had profuse outcome on reaction as indicated by high TOF (18.03 × 10?5 mol g?1 min?1). Furthermore, catalyst was recycled for 7-times without significant loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号