首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Monolithic columns have been prepared with a novel bonded silica stationary phase, tetradecylamine bonded silica (TDAS), and used in pressurized capillary electrochromatography (pCEC). The monolithic silica column matrix was prepared by a sol-gel process and then chemically modified with the spacer (3-glycidoxypropyl)trimethoxysilane and tetradecylamine. The introduced embedded polar amine groups dominated the charge on the surface of the monolithic stationary phase and generated an EOF from cathode to anode under acidic conditions. The tetradecyl hydrophobic chains in TDAS provide chromatographic interactions. The chromatographic characteristics of the prepared monolithic column were studied. Some aromatic compounds including alkylbenzenes, aromatic hydrocarbons, phenols, and anilines were successfully separated on the TDAS monolithic column in pCEC mode. As expected, the TDAS monolithic stationary phases exhibit typical reversed-phase electrochromatographic behavior toward neutral solutes due to the introduced tetradecyl groups. Hydrophobic as well as electrophoretic migration processes within the monoliths were observed in the separation of basic anilines. Symmetrical peaks can be obtained for anilines because the embedded polar amine groups on the surface can effectively shield the adsorption of positively charged analytes onto the stationary phase.  相似文献   

2.
A stationary phase based on poly(1-vinylimidazole)-grafted silica has been prepared by the surface radical chain-transfer reaction. The stationary phase was characterized by infrared spectra, X-ray photoelectron spectroscopy and elemental analysis. Chromatographic characteristics of the stationary phase were investigated in normal-phase HPLC. The results showed that both weak polar compounds (polycyclic aromatic hydrocarbons, dialkyl phthalates) and polar compounds (anilines, phenols) could be successfully separated on this stationary phase, implying better separation performance than blank silica and conventional aminopropyl-bonded silica under the same conditions. The excellent performance can be attributed to multiple interactions between surface modifier and the analytes that might include dipole, hydrogen bonding, H-π, electrostatic and inductive interactions.  相似文献   

3.
Ye F  Xie Z  Wu X  Lin X  Chen G 《Journal of chromatography. A》2006,1117(2):170-175
A novel stationary phase phenylaminopropyl silica (PhA-silica) monolith was successfully prepared for pressure assisted capillary electrochromatography (pCEC). The monolithic silica matrix from a sol-gel process was chemically modified by using [3-(phenylamino)propyl]trimethoxysilane as surface modification reagent to produce the phenylaminoporpyl function. The secondary amino groups on the surface of the monolithic stationary phase contributed to the generation of anodic electroosmotic flow (EOF) under acidic conditions. The phenyl group together with the spacer (-(CH(2))(3)-) in PhA-silica provides sufficient hydrophobic properties. To evaluate the column performance, effects of buffer pH and mobile phase composition on the mobile phase linear velocity and the retention factors of alkylbenzenes, phenols and anilines were investigated in pCEC mode. The monolithic stationary phases exhibit typical reversed-phase (RP) electrochromatographic behavior toward neutral solutes. Hydrophobic as well as electrophoretic migration process within the monoliths was observed for the separation of basic solutes such as anilines without peak tailing.  相似文献   

4.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

5.
Reactive organic polymer monoliths were prepared in fused-silica capillaries by UV-initiated free radical polymerization of N-acryloxysuccinimide (NAS) as reactive monomer, ethylene dimethacrylate as crosslinker, azobisisobutyronitrile as initiator, and toluene as porogen. In a second synthetic step, chemical derivatization of the activated-ester moieties was performed in situ through alkylation reaction with alkylamines to afford monolithic stationary phases with potential reversed-phase properties. A correlation between the synthesis conditions--composition of the reactive solution--chemical characteristics of the reactive polymer monoliths--nitrogen/NAS content--and the reversed-phase separation properties of the functionalized monolithic columns--selectivity towards homologous series of akylbenzenes--was clearly established. This finding offers the possibility of adjusting the experimental conditions with respect to the target applications. The monolithic stationary phases with optimized chemical and porous structures were used for the CEC separation of alkylbenzenes, phenols, anilines, organic acids, amino acids, and proteins. The data indicate that depending on the nature of the analytes (charge, hydrophobic/hydrophilic balance, size) reversed-phase or mixed modes may account for the observed separation.  相似文献   

6.
Jiang  Qiong  Zhao  Wenjie  Qiu  Hongdeng  Zhang  Shusheng 《Chromatographia》2016,79(21):1437-1443

In this study, octylbenzimidazolium-modified silica (BeImC8-Sil) was prepared by covalent attachment of 1-octylbenzimidazole to γ-chloropropyl silica. The synthesized materials were characterized by the elemental analysis, IR spectrum, and thermogravimetric analysis. Due to the introduction of phenyl and octyl groups on the quaternary imidazolium, the developed BeImC8-Sil column can function via both reversed-phase and anion-exchange retention mechanisms. The chromatographic properties of the synthesized material were investigated by the separations of polycyclic aromatic hydrocarbons, mono-substituted derivatives of benzene, anilines, and phenols, revealing the existence of multiple interactions, including hydrogen bonding, π–π stacking, electrostatic forces, and hydrophobic interactions in reversed-phase mode; inorganic and organic anions were also separated mainly through anion-exchange interaction. The proposed BeImC8-Sil is a promising mixed-mode stationary phase for the separation of complex samples in high-performance liquid chromatography.

  相似文献   

7.
A highly chemically stable polymer-coated silica-based C8 stationary phase was developed by combining modification with octyl groups and a polymer coating technology. The stationary phase was prepared by the following procedure: (1) introduction of octyl groups to the silica surface; (2) coating the C8 silica with a silicone polymer. 29Si solid-state NMR spectra indicated that a silicone polymer reacted not only with residual silanol groups on the silica surface, but with those generated from silanes used for the introduction of octyl groups. Column durability was evaluated with an acidic mobile phase (60 degrees C, pH 1) and a basic mobile phase (50 degrees C, pH 10) in accelerated damaging conditions. The C8 phase showed a high durability under both conditions.  相似文献   

8.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

9.
A parallel library of 108 4-aryl-1,4-dihydropyrimidine (DHPM) enantiomers, which are potential selectors for chiral HPLC separations, was synthesized using the single-step Biginelli multicomponent condensation. The individual compounds were screened by observing the enantioselectivity for resolution on a "brush-type" L-(3,5-dinitrobenzoyl)leucine-based chiral stationary phase, and separation factors alpha up to 12 were achieved. The best candidates from the library contained an ortho-substituted aromatic group at C4 carbon atom of the pyrimidine ring and an alkyl substituent at N1 nitrogen atom. Resolution of the enantiomers of the lead compound, 4-(9-phenanthryl)-DHPM 8, using semipreparative chiral HPLC followed by attachment to monodisperse macroporous aminomethacrylate beads, provided the novel polymer based chiral stationary phase with good enantioselectivities in the resolution of several pi-acidic aryl-dihydropyrimidines and derivatized profens. In addition, 3,5-dinitrobenzamido derivatives of alpha-amino acids could be resolved under normal phase HPLC conditions with separation factors up to 8.  相似文献   

10.
Chemical bonding reaction and immobilization through low energy radiation (heating) have been investigated to fix a side-chain liquid crystalline polymer (SC-LCP) on silica particles in order to use the resulting modified silica in normal-phase HPLC. Highly stable chromatographic stationary phases are observed under excellent polymer solvent flow conditions (THF) for both methods and better column efficiencies are also exhibited towards PAHs' separation compared to the classical coated stationary phase. The characterization of these new stationary phases and the rationale for improved column stability have been investigated by solid state 13C and 29Si CP/MAS NMR spectroscopy. It is clearly shown that the chemical bonding is achieved by the classical hydrosilylation reaction between PHMS chains and vinyl modified silica. The bonded polymer is likely a copolymer than a homopolymer. The immobilization of the SC-LCP by heating results in the breaking of Si-O-Si bonds of the polysiloxane chain after the attack of the silica surface silanols. Applications to fullerenes and carotenes separation of these bonded stationary phases are compared to the separation power of a classical monomeric C18 stationary phase in NP-HPLC as n-hexane-toluene or methyl-tertiobutyl ether-methanol mixtures.  相似文献   

11.
Dong X  Dong J  Ou J  Zhu Y  Zou H 《Electrophoresis》2007,28(15):2606-2612
Enantiomeric separations in CEC with the macrocyclic antibiotic vancomycin immobilized silica monolith as a chiral stationary phase are presented. The monolithic silica capillary columns were prepared by a sol-gel process in fused-silica capillaries with an inner diameter of 50 mum and subsequently in situ immobilization of vancomycin as a chiral selector by reductive amination. Enantioselectivity was obtained for eight pairs of enantiomers in nonaqueous polar organic or aqueous mobile phases and most of them were baseline-separated with high column efficiencies. It was observed that the organic modifier ratio (MeOH/ACN) in the polar organic mobile phase played a significant role in controlling the resolution and efficiency of the enantiomers. In enantiomeric separation of propranolol, repeatability for column efficiency and resolution in the nonaqueous mobile phase was given in terms of RSD values at 1.1 and 2.3% (n = 5) for run-to-run injections and 7.2 and 9.6% (n = 5) for column-to-column testing while repeatability for the separation of thalidomide in the aqueous mobile phase was given in terms of RSD values at 1.5, 2.8% and 6.1, 10.5%, respectively.  相似文献   

12.
A 25,27‐bis(l ‐phenylalaninemethylester‐N‐carbonylmethoxy)‐26,28‐dihydroxy‐ paratert‐butylcalix[4]arene‐bonded silica gel stationary phase was synthesized, structurally characterized and used for LC. Its separation mechanism was studied and compared with octadecyl‐bonded stationary phase, as well as our previously prepared para‐tert‐butylcalix[4]arene‐1,2‐crown‐4 stationary phase. Meanwhile, the chromatographic behaviors were investigated by using polycyclic aromatic hydrocarbons, monosubstituted benzenes, anilines, phenols, Tanaka tests solutes, fluoroquinolones, and flavonoids as probes. Mechanisms involved in the chromatographic separation included hydrophobic, π‐π and π‐electron transfer, hydrogen bonding, and inclusion interactions. Moreover, the column was successfully employed for the analysis of the illegal additive of melamine in milk product.  相似文献   

13.
The effect of different parameters controlling the characteristics of linear polyacrylamide coatings deposited on the inner wall of fused-silica capillaries and their influence on capillary electrophoresis (CE) performance of these coated columns is investigated. To carry out this study, a reproducible procedure to obtain capillaries with similar extent of modification of the surface silanols with 7-oct-1-enyltrimethoxisilane was first approached. Next the polymer attachment to the silica wall, via covalent linkage to the silyl reagent grafted onto the silica, was investigated. In this way, by using columns with a similar silylation extent, differences in CE performance observed among capillaries coated under diverse conditions could be assigned to the characteristics of the polyacrylamide layer. It is demonstrated that the characteristics and reproducibility of these polymeric coatings depend on the adequate control of both the temperature of polymerization and the degassing of the polymerizing dissolutions used. More interestingly, it is also demonstrated that the quantities of monomer (acrylamide), initiator (ammonium persulfate) and activator (N,N,N′,N′-tetramethylethylenediamine), and the ratio among them used in the preparation of the coating polymer have a large influence on the performance of CE columns. The optimum conditions for preparing the polyacrylamide coatings are discussed. The applicability of these linear polyacrylamide-coated capillaries to the separation of basic and acidic proteins in free zone CE is demonstrated. Besides, the use of these coated columns in capillary gel electrophoresis for the separation of DNA fragments is shown.  相似文献   

14.
Nano-liquid chromatography-mass spectrometry (nano-LC-MS) was evaluated for the separation of basic compounds of pharmaceutical interest. The separation of selected beta-blockers, namely nadolol, oxprenolol, alprenolol and propranolol in the presence of terbutaline was performed using two 75 microm I.D. capillaries packed with two different RP18 stationary phases (SP). The best results concerning resolution and efficiency were achieved using the SP where free silanol groups were not present. As expected, this latter SP proved to be very efficient and symmetry factors were observed mainly in the case of the more retained analytes. Baseline resolution of all studied basic compounds was achieved with the Cogent bidentate C18 silica phase (CBC18) eluting analytes at 800 nL/min with a mobile phase containing 500 mM ammonium acetate pH 4.5-water-methanol (1:8:91, v/v/v). The separated basic compounds were revealed using on-column UV detector at 205 nm and electrospray-ion-trap mass spectrometer (ESI-MS). The packed capillary was connected to the MS through a commercial sheath liquid interface or a sheathless nano-spray interface and in both cases the sensitivity was studied and the results compared. Limit of detection (LOD) as low as 0.1 ng/mL was measured for nadolol using the sheathless nano-spray interface and the capillary column packed with the CBC18 stationary phase.  相似文献   

15.
A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated‐atom transfer radical polymerization was proposed to prepare a mixed‐mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed‐mode stationary phases. In this study, a new reverse‐phase/ion‐exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4‐styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β‐agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously.  相似文献   

16.
The growth of polymer brushes on polymer substrates is often challenging because of substrate incompatibility with the organic solvents used for initiator attachment. This letter reports the use of layer-by-layer adsorption of macroinitiators and subsequent aqueous ATRP from these immobilized initiators to prepare polymer brushes on polymeric substrates. Polyethersulfone (PES) films and porous membranes were modified with polyelectrolyte multilayer films, and a previously developed polycationic initiator, poly(2-(trimethylammonium iodide)ethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl acrylate), was then electrostatically adsorbed onto these polyelectrolyte films. The immobilized macroinitiator is very efficient in initiating the growth of polymer brushes on PES, as demonstrated by aqueous syntheses of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) films. PHEMA (250 nm thick) and PDMAEMA (40 nm thick) brushes were grown in 2 h from surfaces modified with polycationic initiators. Moreover, this procedure is effective for growing brushes in the pores of PES membranes.  相似文献   

17.
十二烷基键合氧化锆固定相的制备与性能评价   总被引:3,自引:0,他引:3  
以自制5μm球形氧化锆为基质,制备了十二烷基键合氧化锆HPLC固定相,考察了正烷基取代苯、稠环芳烃、苯胺及吡啶衍生物、苯酚和硝基苯酚异构体等不同性质化合物在固定相上的保留行为,并与十二烷基键合硅胶固定相进行了比较。结果表明:中性和碱性化合物在固定相上主要为反相色谱保留机理;酸性化合物在固定相上以反相色谱保留机理为主,但是氧化锆表面的Lewis酸性中心对溶质也存在一定程度吸附作用,导致色谱峰拖尾。  相似文献   

18.
《中国化学快报》2021,32(11):3372-3376
This work presents a novel strategy for engineering a GC stationary phase with high selectivity, inertness and thermal stability by introducing the 3D π-rich TP moieties to the terminals of a polar chain polymer. Herein, we provide the first example, i.e., a new TP-terminated polycaprolactone polymer (TPP) as the stationary phase for GC analyses. As demonstrated, the TPP column achieved distinctly improved inertness to fatty acids and aldehydes, and dramatically enhanced thermal stability (about 100 °C higher) over the PCL column. Also, the TPP column exhibited high resolving capability towards the positional isomers of phenols, anilines and alkylated/halobenzenes and showed good potential in detecting minor impurities in chemical products. Importantly, the proposed strategy is facile, feasible and generally applicable to analogous polymers.  相似文献   

19.
A series of poly(norborn-2-ene) (poly-NBE), poly(7-oxanorborne-2-ene-5,6-dicarboxylic acid) (poly-ONDCA), as well as poly(norborn-2-ene-co-7-oxanorborne-2-ene-5,6-dicarboxylic acid) (poly-NBE-co-ONDCA) based silica supports were prepared via ring-opening metathesis polymerization (ROMP) using both coating and grafting techniques. Poly-NBE-grafted and poly-NBE-coated supports were used for the reversed-phase separation of phenols; poly-NBE, poly-ONDCA as well as poly-NBE-co-ONDCA-grafted supports were used for comparative studies on the separation of a series of anilines and lutidines. As expected, grafted supports possess superior separation capabilities compared to their coated analogues. Compared to pure poly-NBE- and poly-ONDCA-grafted stationary phases, supports consisting of poly-NBE-co-ONDCA block-copolymers possess both hydrophobic and ion-exchange sites and represent optimum stationary phases for the separation of isomeric basic analytes.  相似文献   

20.
A fused silica capillary column was packed with RP(18) silica stationary phase entrapping the particles between two frits obtained by two different procedures. The inlet frit consisted of a short organic polymer made via a thermopolymerization process while the outlet frit was prepared by sintering the octadecylsilica (ODS) material. The packed column was employed in capillary electrochromatography (CEC) experiments for the separation of three selected test compounds. Retention time and separation efficiency were evaluated. Results were compared with those ones obtained with a packed capillary containing the same stationary phase entrapped between two sinterized frits. The novel packed column exhibited comparable separation efficiency and resolution with the traditional one. However, it allowed experiments without pressure support during the runs with no bubble formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号