首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

2.
Summary [OsCl(NO)2(PPh3)2]BF4 has been synthesised from [OsCl(CO)(NO)(PPh3)2] and NOBF4 and characterised in the solid state by a single crystal x-ray analysis determination and in solution by31P{1H} and15N n.m.r. studies. The nitrosyl ligands in [OsCl(NO)2(PPh3)2]+ are approximately linear, and 170(1)0, and the co-ordination geometry about the metal ion is close to trigonal bipyramidal. This contrasts with the occurrence of a linear and a bent nitrosyl ligand in [RuCl(NO)2(PPh3)2]+ and a square-pyramidal metal geometry. In solution the15N n.m.r. spectrum of a 50%15N enriched sample of [OsCl(NO)2(PPh3)2]+ shows an equilibrium isotope effect similar to that reported for [RuCl(NO)2(PPh3)2]+ and suggests that both complexes exist in solution as rapidly equilibrating isomeric forms.  相似文献   

3.
Summary Treatment of complexestrans-[M(CNBu-t)2(dppe)2][(1) M = Mo or W, dppe = Ph2PCH2CH2PPh2] with protic acid gives a mixture of the aminocarbyne complexestrans- pluscis-[M(CNHBu-t)(CNBu-t)(dppe)2]+ (2) and the hydridocompounds [MH(CNBu-t)2(dppe)2]+ (3), whereas reaction with an alkylating agent (R+) appears to give the dialkylaminocarbyne compounds [M(CNRBu-t)(CNBu-t)(dppe)2]+ (4) also as a mixture of thetrans andcis isomers.  相似文献   

4.
Kinetic and mechanistic studies of the homogeneous hydrogenation of cyclohexanone were carried out using the cationic complexes [MH(CO)(NCMe)2(PPh3)2]BF4 (M = Ru, Os) as the catalyst precursors, which were very efficient under mild reaction conditions in 2-methoxyethanol solution. For both complexes, the catalytic hydrogenation of cyclohexanone proceeds according to the rate law r = k[M][H2]. The activation parameters were also calculated, the activation energy for the osmium catalyst being higher than for the ruthenium(I). All experimental data are consistent with a mechanism involving the oxidative addition of hydrogen as the rate-determining step of the catalytic cycle. Finally, the [MH(CO)(NCMe)2(PPh3)2]BF4 complexes were efficient precatalysts for the selective reduction of 2-cyclohexen-1-one to cyclohexanone; the reduction of the CO group of cyclohexanone only begins to take place when the ,-unsaturated ketone has been consumed.  相似文献   

5.
The action of trifluoroacetic acid on the series M(CO)6?n(PA3)n (M = Mo, W; A = CH3, OCH3; n = 2, 3, 4) has shown that protonation occurs if n ? 3. For n = 3 the basicity of the ligand PA3 plays a more important role in the stability of [HM(CO)3(PA3)3]+complexes than for n = 4. Infrared and proton NMR give evidence of the stereochemical non-rigidity of the [HM(CO)6?n(PA3)n]+ heptacoordinated cation.  相似文献   

6.
Summary Equimolar quantities of [MI2(CO)3(NCMe)2] (M = Mo or W) and C3H4N2 (pyrazole) react in CH2C12 at room temperature to give the iodo-bridged dimers [M(μ-I) (CO)3(C3H4N2)]2 (1) and (2). Two equivalents of C3H4N2 react with [MI2(CO)3(NCMe)2] (M = Mo or W) to give the bis(pyrazole) complexes [MI2(CO)3(C3H4N2)2] (3) and (4) in good yield. Three and four equivalents of pyrazole react with [MoI2(CO)3(NCMe)2] to give the cationic complexes [MoI(CO)3(C3H4N2)3]I (5) and [MoI(CO)2(C3H4N2)4]I (6), respectively. The mixed ligand complexes [MI2(CO)3(C3H4N2)L] (M = Mo or W; L = PPh3, AsPh3 or SbPh3) (7)-(12) are prepared by reacting equimolar amounts of [MI2(CO)3(NCMe)2] and L in CH2C12 at room temperature, followed by an in situ reaction with one equivalent of C3H4N2. The MoSnCl3 complex [MoCl(SnCl3)(CO)3(C3H4N2)2] (13) is prepared in an analogous manner using acetone as the solvent, whilst the mixed ligand compound [MoCl(SnQ3)(CO) 3(C3H4N2)(PPh3)] (14) was prepared by treating the dimeric complex [Mo(μ-Cl)(SnCl3)(CO)3(PPh3)]2 with two equivalents of C3H4N2. All the new complexes were characterised by elemental analysis (carbon, hydrogen and nitrogen), i.r. and 1H n.m.r. spectroscopy.  相似文献   

7.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

8.
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6], [M(N3)4(2,2′‐bipy)2]+[M(N3)6] and [M(N3)4(1,10‐phen)2]+[M(N3)6] were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2⋅L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed.  相似文献   

9.
Syntheses and Structures of the Phosphorus and Nitrogenbridged Transition Metal Complexes [Pd(NPhPPh2)(PPh3)]2, [Pd(NPhPPh2)2 · Li(thf)]2, [Pd(NPhPPh2)Cl · Li(thf)3]2, [M(NPhPPh2)(HNPhPPh2)]2 (M?Pd, Pt), [M{Ph2P(NPh)2}2] (M?Co, Ni), [Ni(PPh2){Ph2P(NPh)2}]2 and [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3] . From the reaction of LiNPhPPh2 with Palladium-Nickel- and Cobaltcomplexes, depending on the reaction conditions, different monomeric and dimeric complexes can be isolated. In these compounds the (NPhPPh2)?-group acts as both a bridging and as a terminal ligand. [Pd(NPhPPh2)(PPh3)]2 ( 1 ), [Pd(NPhPPh2)2 · Li(thf)]2 ( 2 ) and [Pd(NPhPPh2)Cl · Li(thf)3]2 ( 3 ) are formed from the reaction of [PdCl2(PPh3)2] or [PdCl2(COD)] with LiNPhPPh2. In contrast to this from the reaction of Pd(Ac)2 and HNPhPPh2 (in the presence of zinc-dust) or [PtCl2(py)2] and LiNPhPPh2.  相似文献   

10.
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6]?, [M(N3)4(2,2′‐bipy)2]+[M(N3)6]? and [M(N3)4(1,10‐phen)2]+[M(N3)6]? were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2?L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed.  相似文献   

11.
The reaction of equimolar amounts of [Co(CO)3(NO)] and [PPN]CN, PPN+ = (PPh3)2N+, in THF at room temperature resulted in ligand substitution of a carbonyl towards the cyanido ligand presumably affording the complex salt PPN[Co(CO)2(NO)(CN)] as a reactive intermediate species which could not be isolated. Applying the synthetic protocol using the nitrosyl carbonyl in excess, the title reaction afforded unexpectedly the novel complex salt PPN[Co2(μ-CN)(CO)4(NO)2] ( 1 ) in high yield. Because of many disorder phenomena in crystals of 1 the corresponding NBu4+ salt of 1 has been prepared and the molecular structure of the dinuclear metal core in NnBu4[Co2(μ-CN)(CO)4(NO)2] ( 2 ) was determined by X-ray crystal diffraction in a more satisfactory manner. In contrast to the former result, the reaction of [PPN]SCN with [Co(CO)3(NO)] yielded the mononuclear complex salt PPN[Co(CO)2(NO)(SCN-κN)] ( 3 ) in good yield whose molecular structure in the solid was even determined and its composition additionally confirmed by spectroscopic means.  相似文献   

12.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

13.
Summary The rhodium(I) carbonyl compounds [Rh(CO)L22] [BF4]. 1/2CH2Clnn2 (L = PPh2 or AsPh3) react with the nucleophiles OMe, RCOO (R = Me, Et) under nitrogen to form [Rh(OR)(CO)L2] (1)–(2) and [Rh(OOCR)(CO)L2] (7)–(10), respectively. Addition of [Rh(CO)2(PPh3)2]-[BF 4] to OMe under nitrogen produces [Rh(COOMe)-(CO) (PPh3)2]-MeOH (3), whilst reactions of [Rh(CO)-(PPh3)2] [BF4]·1/2CH2Cl2 and [Rh(CO)2(PPh3)2] [BF4] with OR- (R = Me, Et or n-Pr) in the presence of CO produce [Rh(COOR)(CO)2(PPh3)2] (4)–(6). The products have been characterised by i.r., 1H, 31P, 13Cn.m.r. spectroscopy and elemental analysis.  相似文献   

14.
In a new oxidative route, Ag+[Al(ORF)4]? (RF=C(CF3)3) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)n]+ salts (n=2, 3) with the weakly coordinating [Al(ORF)4]? anion in quantitative yield. The In+ salt and the known analogous Ga+[Al(ORF)4]? were used to synthesize a series of homoleptic PR3 phosphane complexes [M(PR3)n]+, that is, the weakly PPh3‐bridged [(Ph3P)3In–(PPh3)–In(PPh3)3]2+ that essentially contains two independent [In(PPh3)3]+ cations or, with increasing bulk of the phosphane, the carbene‐analogous [M(PtBu3)2]+ (M=Ga, In) cations. The MI? P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2‐TZVPP, MP2/def2‐TZVPP, and SCS‐MP2/def2‐TZVPP levels.  相似文献   

15.
[OS(η2-CS2Me)(CO)2(PPH3)2]+ and [Ir(η2-CS2Me)Cl(CO)(PPh3)2)+ react with NaBH4 giving OsH(CS2Me)(CO)2(PPh3)2 and IrH(CS2Me)Cl(CO)(PPh3)2 respectively; These compounds contain mutually cis hydride and η1-dithiomethylester ligands and upon heating undergo 1,2-elimination of MeSH producing Os(CS)(CO)2(PPh3)2 and IrCl(CS)(PPh3)2.  相似文献   

16.
Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride–azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride–azide exchange resulted in the isolation of the adducts MO2(N3)2⋅2 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2′‐bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4]2− were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X‐ray crystal structures.  相似文献   

17.
Syntheses and Structure of Chiral Metallatetrahedron Complexes of the Type [Re2(M1PPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M1 = Ag, Au; M2 = Cu, Ag, Au) From the reaction of Li[Re2(μ‐H)(μ‐PCy2)(CO)7(C(Ph)O)] ( 1 ) with Ph3AuC≡CPh both benzaldehyde and the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 2a ) were obtained in high yield. The complex anion was isolated as its PPh4‐salt 2b . The latter reacts with coinage metal complexes PPh3M2Cl [M2 = Cu, Ag, Au] to give chiral heterometallatetrahedranes of the general formula [Re2(AuPPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M2 = Cu 3a , Ag 3b , Au 3c ). The corresponding complex [Re2(AgPPh3)2(μ‐PCy2)(CO)7C≡CPh] ( 3d ) is obtained from the reaction of [Re2(AgPPh3)2(μ‐PCy2)(CO)7Cl] ( 4 ) with LiC≡CPh. 3d undergoes a metathesis reaction in the presence of PPh3CuCl giving [Re2(AgPPh3)(CuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 3e ) and PPh3AgCl. Analogous metathesis reactions are observed when 3c is reacted with PPh3AgCl or PPh3CuCl giving 3a or 3b , respectively. The reaction of 1 with PPh3AuCl gives benzaldehyde and Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5a ) which upon reaction with PhLi forms the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Ph] ( 6a ). Again this complex was isolated as its PPh4‐salt 6b . In contrast to 2b , 6b reacts with one equivalent of Ph3PAuCl by transmetalation to give Ph3PAuPh and PPh4[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5b ). The X‐ray structures of the compounds 3a , 3b , 3e and 4 are reported.  相似文献   

18.
Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride–azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride–azide exchange resulted in the isolation of the adducts MO2(N3)2⋅2 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2′‐bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4]2− were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X‐ray crystal structures.  相似文献   

19.
Reaction between Ru(CO)2(PPh3)3 and MeHgI yields Ru[η2-C(O)CH3]I(CO)(PPh3)2 which in solution exists mainly as RuCH3I(CO)2(PPh3)2 and crystal structure determination of Ru[η2-C(O)CH3]I(CO)(PPh3)2 and previously described Ru[η2-C(O)p-tolyl]I(CO) (PPh3)2 confirms that in the solid state both molecules contain dihapto-acyl ligands.  相似文献   

20.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号