首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NH4(Pic)(DB18C6) (Pic=picrate and DB18C6=dibenzo-18-crown-6), (C26H30N4O13) FW 606.56, arthorhombic,Pmn21,a=26.045(5),b=12.055(3),c=8.982(3) Å,V=2820(1) Å3,Z=4,D c =1.429 g/cm3, CuK, =1.54184 Å, (CuK)=9.5 cm–1,F(000)=1272,T=298 K. The structure has been refined toR=0.0475 for 2617 unique observed reflections. In the lattice the 1:1 complex exists as a 2:2 dimer in which the crown are coupled through the Pic anions and NH4 + cations. The asymmetric unit consists of two independent half crown ethers of which two opposite O atoms are on the mirror plane, two half ammonium cations of which the N and two H atoms are also on the mirror plane while the Pic anion is in a general position. Relative to each other, the corwn ethers are shifted by about 7.3 Å alongb and 1 Å alongc. The 1:1 sandwich of NH4 with DB18C6 and Pic on dimerisation becomes a club pseudo-sandwich with three phenyl rings on either side of the mirror plane, thus forming a nearly parallel stack with a 3.6 Å inter-ring distance. The NH4 ions hold the structure; two H atoms on the mirror plane are hydrogen-bonded to the opposite oxygens of the crown located on the purely aliphatic part of the ring (2.10(1), 2.06(3) and 2.26(3), 2.05(1) Å) for the two independent crowns, respectively, while the other two H atoms form mirror-related bifurcated hydrogen bonds with the phenoxide oxygen (1.99(1) and 2.01(1) Å) and theo-nitrogen oxygen (2.44(2) and 2.34(1) Å) of the picrates. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82037 (29 pages)  相似文献   

2.
Crystalline bis(dibenzo-18-crown-6)rubidium triiodide complex [Rb(DB18C6)2]+ · I3 (I) is synthesized and its structure is studied by X-ray diffraction analysis. The structure of I (space group Pnma, a = 23.854 Å, b = 23.612 Å, c = 7.863 Å, Z = 4) is solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.079 against 3990 independent reflections (CAD4 automated diffractometer, MoK ). Structural units of crystal I are the I3 anions and [Rb(DB18C6)2]+ cations. The crystal has the structure intermediate between that of a standard host–guest complex and a sandwich complex. In the structure of complex I, the crystallographic plane with symmetry m passes through the I3 anion (perpendicularly to its axis) and complex cation. The coordination polyhedron of the Rb+ cation is a strongly distorted hexagonal pyramid with the O atom of one crown ligand at the axial vertex and a base of six O atoms of another DB18C6 crown ligand.  相似文献   

3.
The crystal structure of triaqua(1,10-diaza-18-crown-6)chlorobarium chloride [Ba(DA18C6)Cl(H2O)3]+Cl(I) is studied by X-ray diffraction analysis: space group Pnma, a= 14.912, b= 13.590, c= 10.456 Å, Z= 4. Structure Iis solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation: R= 0.079 for all 3194 measured independent reflections (CAD-4 diffractometer, MoK ). Crystal Iexists as complex guest–host cations and Clanions connected via interionic hydrogen bonds. The cations and anions are located in the msymmetry plane. The Ba2+ion (coordination number 10) is in the cavity of the DA18C6 macrocycle and is coordinated by its six heteroatoms (2N + 4O) and also by the Clanion and two O atoms of two water molecules from one side of the macrocycle and by the O atom of the third water molecule from another side. The DA18C6 ligand in Ihas the conformation of a crown with an approximate D 3d symmetry.  相似文献   

4.
The diaqua(1,10-diaza-18-crown-6)(tetrafluorosuccinato-O)barium complex [Ba(DA18C6)(C4F4O4)(H2O)2] (I) is synthesized and studied using X-ray diffraction analysis: space group P21/n, a = 16.342 Å, b = 8.989 Å, c = 17.087 Å, = 107.09°, Z = 4. The structure was solved by the direct method and refined by the full-matrix least squares method in anisotropic approximation to R = 0.075 for all 3515 unique reflections (CAD4 automated diffractometer, MoK ). Complex I exists in the crystal as individual host–guest molecules of the aforementioned composition. The Ba2+ cation (coordination number 9) is located in the void of the DA18C6 macrocycle and is coordinated by its six O and N heteroatoms. It is also coordinated by the O atom of the tetrafluorosuccinate ligand and the O atom of the water molecule on one side of the macrocycle and by the O atom of the second water molecule on the other macrocycle side. The DA18C6 ligand has a crown conformation with approximate D 3d symmetry. The complex molecules in the crystal are combined into infinite two-dimensional layers by intermolecular hydrogen bonds.  相似文献   

5.
An X-ray—diffraction study is reported for two molecular complexes containing 3,4-diamino-1,2,5-oxadiazole as guest (G) with 18-crown-6 (18-C-6) andcis-anti-cis-dicyclohexano-18-crown-6 (DCH-6B) as host. Both complexes are of the polymeric-chain structure with the guest molecule bridging two crown neighbours. ComplexI: [18-C-6*G*H2O], 111, monoclinic,P21/n,a=8.171(1),b=15.042(2),c=16.209(6) Å, =101.15(2)°, finalR-factor 0.068. ComplexII: [DCH-6B*G], 11, monoclinicC2/c,a=21.212(4),b=9.380(2),c=13.049(3) Å, =108.61(3)°, finalR 0.047.  相似文献   

6.
A new compound, aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(perchlorato-O)potassium perchlorate ([K(DB18C6)(H2O)]+ · [K(ClO4)(DB18C6)] · ClO 4 ? ; compound I) is synthesized and studied by X-ray crystallography. The crystals are triclinic: a = 9.050 Å, b = 9.848 Å, c = 26.484 Å, α = 82.87°, β = 84.16°, γ = 77.93°, Z = 2, space group P $\bar 1$ . The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.058 for 5960 independent reflections (CAD4 diffractometer, λMoK α radiation). A complex cation [K(DB18C6)(H2O)]+ and a complex molecule [K(ClO4)(DB18C6)] are of the host-guest type; they are linked into a dimer through two K+ → π(C) bonds formed by one of the two K+ cations with two C atoms of the benzene ring of the DB18C6 ligand from the adjacent complex. Both DB18C6 ligands in I have a butterfly conformation with approximate symmetry C 2v .  相似文献   

7.
Two novel heterometallic cubane-like and double cubane-like clusters, {MoCu3S3(S2COEt)}(O)(Ph3P)3 I and {Mo2Cu6S6(SCMe3)2}(O)2(Ph3P)4 II, were synthesized by reaction of {MoCu2S3}(O)(Ph3P)3 with CuS2COEt and CuSCMe3, respectively. ClusterI crystallized in the triclinic space group (2) witha=12.766(6) Å,b=22.904(5) Å,c=10.522(3) Å, =99.86(2)°, =109.68(2)°, =86.84(3)°,V=2854(2) Å3,Z=2,R=0.049 for 6622 observed reflections (I>5(I)) and 410 variables. ClusterII crystallized in the triclinic space group (2) with dimensionsa=14.212(4) Å,b=14.725(5) Å,c=12.396(8) Å, =110.32(4)°, =90.40(5)°, =62.88(2)°,V=2129(2) Å3,Z=1,R=0.039 for 6020 observed reflections (I>3(I)) and 461 variables. ClusterI consists of a neutral cubane-like molecule with the core {MoCu3S3(S2COEt)}2+, in which one corner of the cubane-like core is a novel triply bridging bidentate 1,1-dithiolato (xanthate, S2COEt) ligand. ClusterII is a double cubane-like one, in which two cubane-like cores {MoCu3S3(SCMe3)}2+ are connected by two Cu-S bonds of the triply bridging monothiolato (SCMe 3 ) ligand. Two different pathways of unit construction from a small heterometallic cluster {MoCu2S3}(O)(Ph3P)3 have been outlined. Comparisons of the selected bond lengths and bond angles for the cubane-like core {MoCu3S3 X} (X=Cl, Br, S2COEt, SCMe 3 ) are given. Spectroscopic properties of the title clusters are also reported.  相似文献   

8.
Crystals of [Cu(DAF)(H2O)]BF4(I) and [Cu(DAF)(ClO4)] (II) (DAF is diallyl formamide) were synthesized by an alternate-current electrochemical method, and their structures were determined (MoK radiation, 1247 and 859 independent reflections with I 2(I), R= 0.043 and 0.032 for Iand II, respectively). The complexes crystallize in space group P21/n, Z= 4. For I, a= 10.782(3) Å, b= 12.096(5) Å, c= 9.185(3) Å, = 103.62(3)°, and V= 1164.2(7) Å3; for II, a= 10.064(3) Å, b= 10.753(6) Å, c= 10.002(3) Å, = 87.52(4)°, and V= 1081.4(8) Å3. The copper atom in structures Iand IIcoordinates both C=C bonds in one DAF molecule and oxygen atom of the amide group of another DAF molecule, as well as an oxygen atom of H2O (in I) or ClO4(in II) in the axial position. The uncommon behavior of the anions in structures Iand IIis explained by their different values of Pierson hardness.  相似文献   

9.
Sodium salicylate (NaSal where Sal=2-hydroxybenzoate), when mixed with dibenzo-24-crown-8 (DB24C8) yields a bimetallic complex [NaSal]2DB24C8 in most polar organic media, while potassium salicylate (KSal) under similar conditions shows a tendency to yield 11 or 21 complexes depending upon medium or synthesis. However, the presence of both NaSal and KSal together results in a unique mixed cation complex of composition NaKSal2DB24C8. This product melts sharply (190-92°C) without decomposition, displays IR spectral characteristics comparable to those of [Na(Sal)]2DB24C8, and is stable in aqueous media as shown by the detectable cation effect on the UV absorption bands of Sal and DB24C8. Single crystal X-ray analysis of NaK(Sal)2DB24C8 reveals that the system represents a co-crystallization complex of individual (KSal)2DB24C8 and (NaSal)2DB24C8 molecules. The crystals are monoclinic,P21/c,a=19.976(2) Å,b=9.031(1) Å,c=25.541(5) Å,=122.065(9)°, Å3,T=298 K,Z=2+2, CuK =1.5418 Å, and 2 (2.5°–100°). FinalR factor for the 3012 observed reflections (F>3) is 0.092. Both the Na2- and K2-molecules possess crystallographic centers of symmetry with one metal and its associated anion on each side of the crown ring. However, the conformations of the crowns are very different in the two molecules, with the K2-crown being nearly planar and the Na2-crown being quite puckered. Four oxygen atoms from the DB24C8 (KO, 2.680–2.908 Å) and three carboxyl oxygen atoms (KO, 2.472–2.708 Å) from separate salicylate ions coordinate with each potassium. Three oxygens from the crown (NaO, 2.536–2.65 Å) and three carboxyl oxygens (NaO, 2.31–2.563 Å) coordinate with each sodium. The salicylate ions lie on opposite sides and nearly perpendicular (77.2°, Na2-molecule; 82.7° K2-molecule) to each crown but coordinate to both of the metal ions within a molecule. The K+K+ and Na+Na+ distances in the respective molecules are 3.95 and 3.34 Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82044 (18 pages).  相似文献   

10.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

11.
The crystal structure of the bis(picrato-O,O")tetraaquacalcium complex with 18-crown-6, [Ca(Pic)2(H2O)4] · 18C6 (I), was studied using X-ray diffraction analysis: space group C2/c, a= 20.446 Å, b= 14.985 Å, c= 16.163 Å, = 135. 41°, Z= 4. The structure of Iwas solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R= 0.047 over all 3044 measured independent reflections (CAD4 automated diffractometer, MoK radiation). In the crystal, Iis not a guest–host complex but exists as individual [Ca(Pic)2(H2O)4] and 18C6 molecules joined by intermolecular hydrogen bonds and van der Waals interactions. The Ca2+cation (CN 8) is located on a twofold crystallographic axis, its coordination polyhedron being a distorted square antiprism. The centrosymmetrical 18C6 molecule has a crown conformation with approximate D 3d symmetry and has six neighboring water molecules (three on each side of its mean plane), which form eight hydrogen bonds involving all six O atoms of 18C6.  相似文献   

12.
A new compound, ammonium (18-crown-6)(triphenylphosphine oxide) perchlorate (I), is synthesized, and its crystal structure is studied using X-ray diffraction analysis (space group R3m, a = 14.432 Å, c = 14.034 Å, Z = 3, direct method, full-matrix least-squares method in the anisotropic approximation, R = 0.064 for 1945 independent reflections, CAD4 automated diffractometer, λMoKα radiation). In the structure, the NH 4 + cation resides in the 18-crown-6 macrocycle cavity and is hydrogen-bonded with three symmetrically equivalent O atoms of the 18-crown-6 molecule and with the phosphoryl O atom of the Ph3PO molecule. The P=O H-N and Cl atoms occupy the partial position 3m. The oxygen atoms of the ClO 4 ? anion are disordered over the 3m position.  相似文献   

13.
Complex of podand 1,2-bis(2-(o-hydroxyphenoxy)ethyloxy)ethane (L) with potassium thiocyanate, [K2(NCS)2L2] (I) was synthesized and studied using X-ray diffraction analysis: space group P , a = 7.771 Å, b = 11.711 Å, c = 11.965 Å, = 72.22°, = 79.21°, = 89.07°, Z = 1. Structure I was solved by direct method and anisotropically refined by the full-matrix least-squares method to R = 0.040 for all 4370 independent reflections (CAD4 autodiffractometer, MoK ). Structure I contains [K(NCS)L] monomers of the host–guest type united into centrosymmetrical [K2(NCS)2L2] dimers via two bridging OH groups (one group from two L podands). In the monomer, the L podand appears as though to envelope the octacoordinated K+ cation, whose the coordination polyhedron is a strongly distorted hexagonal bipyramid with all six oxygen atoms of the L podand in its base and the N atom of the SCN ligand and the O atom of one of OH group of the neighboring (in dimer) L podand at its axial vertices. Molecules of I in crystal are joined through the O–H···N hydrogen bonds to form broad infinite chains along the x-axis.  相似文献   

14.
A new complex (18-crown-6)(nitrato)(triphenylphosphine oxide)potassium (I) is synthesized, and its crystal structure is studied by X-ray diffraction analysis (space group R3m, a = 14.336 Å, c = 13.776 Å, Z = 3). The structure is solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.034 for 1122 independent reflections (CAD4 automated diffractometer, λ MoKα radiation). Structure I contains a complex host-guest molecule [K(NO3)(18-crown-6)(Ph3PO)] with crystallographic symmetry 3m (three planes m contain three Ph rings of the Ph3PO ligand and all O atoms of the crown ligand). The coordination polyhedron of the K+ cation is a distorted hexagonal bipyramid with all the six O atoms of the crown ligand in the base, the O atoms of the Ph3PO ligand, and one (or two) O atoms of a disordered NO 3 ? ligand in the axial positions.  相似文献   

15.
18-crown-6 reacts with TiCl3 in CH2Cl2 to form a complex in which the crown ether functions as a tridentate ligand. Addition of moist hexane affords a molecular complex in which the crown ether functions as a bidentate ligand. A water molecule is bonded directly to the titanium atom and is further hydrogen bonded to three of the oxygen atoms of the crown. The deep blue crystals of the CH2Cl2 adduct belong to the monoclinic space groupP21/n witha=13.481(8),b=8.021(5),c=21.425(9) Å, =97.32(5)°, and calc = 1.51 g cm–3 forZ=4. Refinement led to a conventionalR value of 0.040 based on 873 observed reflections. The Ti–O bond distances for the crown oxygen atoms are 2.123(8) and 2.154(9) Å, while the oxygen atom of the water molecule is bonded at 2.072(8) Å. The octahedral coordination sphere of the titanium atom is completed by the three chlorine atoms at distances of 2.340(5), 2.352(4), and 2.373(4) Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82034 (10 pages).  相似文献   

16.
Complete structural characterization of dibenzo-18-crown-6·2 CH3NO2 and dibenzo-18-crown-6·2 CH3CN have been carried out, including location and refinement of the methyl hydrogen atoms. Dibenzo-18-crown-6·2 CH3NO2 is monoclinic,P21/c, with (at –150°C)a=9.573(2),b=14.636(2),c=33.471(7) Å, =93.77(2)°, andD calc=1.37 g cm–3 forZ=8. Interactions between the solvent methyl groups and the crown ethers and other solvent nitro groups associate the 1 : 2 complexes into polymeric chains alongb. The acetonitrile adduct exists as discreet 1 : 2 complexes in the solid state with C–H...O interactions exlusively to the ether. This complex is triclinic,P 1, with (at –150°C)a=9.458(6),b=9.570(5),c=14.404(5) Å, =73.18(4), =79.85(5), =66.82(6)°, andD calc=1.28 g cm–3 forZ=2. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82070 (22 pages).For part 4, see reference [1].  相似文献   

17.
An X-ray diffraction study has been performed to study the crystal structure of 1,10-diazonia-18-crown-6 bis(hydrogen oxalate) [H2DA18C6]2+·2C2HO 4 - (I) and 1,10-diazonia-18-crown-6 oxalate dihydrate [H2DA18C6]2+·2C2O 4 - ·2H2O (II). Crystals I are triclinic: space group , a = 7.825, b = 7.861, c = 9.349 , = 97.28, = 110.22, = 99.12°, Z = 1. Crystals II are monoclinic: space group P2 1 /n, a = 8.783, b = 10.640, c = 10.225 , = 97.04°, Z = 2. The structures of I and II were solved by direct methods and refined by the full-matrix least-squares procedure anisotropically to R = 0.036 (I) and 0.042 (II) for all 2206 (I) and 1990 (II) unique reflections measured (CAD-4 automatic diffractometer, CuK ). In the crystal structures, the ionic complexes (salts) I and II are not individual guest–host complex molecules but are parts of complex (infinite in two directions) three-dimensional layers of H-bonded molecular anions and DA18C6 dications (and water molecules in II). In structures I and II, the centrosymmetric DA18C6 dications have different conformations: two-angle in I and four-angle in II. The unusual four-angle conformation of the DA18C6 dication was found for the first time.  相似文献   

18.
The crystal structure of Cu(OH)Cl [a=5.555 (2) Å,b=6.671 (4) Å,c=6.127 (2) Å, =114.88 (3)°, space group P2I/a,Z=4] was refined for 810 observed reflections with sin /0.80 Å–1 toR=0.035. Crystals were synthesized under hydrothermal conditions. The copper atom is planar four coordinated by three oxygen atoms and one chlorine atom; two further chlorine atoms complete its coordination. The copper polyhedra share edges to build up sheets, which are connected by hydrogen bonds to the chlorine atoms of adjacent sheets.
  相似文献   

19.
The twenty-membered macrocycle, 18,19-benzo-1, 16-diaza-4,7,10,13-tetraoxacycloeicosa-17,20-dione, C18H26N2O6 (1), aminosulfuric acid and water form a stoichiometric 111 inclusion compound. The crystal structure of [1·NH 3 + SO 3 ]·H2O has been determined by X-ray crystallography. The crystal is monoclinic, space groupP21/c, a=7.967(1),b=13.447(3),c=20.779(4) Å, =90.20(2) Å;Z=4. The finalR-value is 0.0434 for 4638 unique reflections withI>2(I). The structure consists of the 11 molecular complexes between the crown host and aminosulfuric acid revealing hydrogen bonding with the ligand ether and carbonyl oxygen atoms. The complexes are united in the layer-like structure by NH...O host-guest and NH...O=CF obs,F calc, tables of anisotropic displacement parameters, and fractional atomic coordinates of hydrogen atoms.  相似文献   

20.
From the reaction of Ru(CO)5 and Pt(COD)2, COD = 1, 5-cyclooctadiene, the new platinum-ruthenium heteronuclear cluster complex Pt2Ru4(CO)18,1, was obtained in 60% yield.1 has a folded ladder-like structure with alternating pairs of ruthenium atoms and platinum atoms. The cluster of1 can be split to yield the known compound PtRu2(CO)8(2-dppe),2, (54% yield) by reaction with 1, 2-bis(diphenylphosphino)ethane, dppe, at 25°C. When1 was treated with excess dppe at 40°C, thebis-diphos compound3, PtRu2(CO)6(-2-dppe)2 was obtained (39% yield). Under the similar reaction conditions,2 was converted to3 in 44% yield. All these complexes were characterized by single crystal X-ray diffraction analyses. Compounds2 and3 both contain a triangular cluster of one platinum and two ruthenium atoms, but in2 the bidentate ligand, dppe, chelates the platinum atom and in3 the two dppe ligands bridge the two Pt-Ru metal-metal bonds. Crystal data for1: space group C2/c,a=12.542(2)Å,b=15.350(4)Å,c=15.252(3)Å, =105.32(2)°,Z=4, 2192 reflections,R=0.025. For2: space group P21/c,a=14.351(2)Å,b=13.486(3)Å,c=19.218(3)Å, =108.48(1)°,Z=4, 3029 reflections,R=0.027. For3: space group P21/c,a=18.836(6)Å,b=15.559(5)Å,c=23.259(7)Å, =111.26(2)°,Z=4, 4204 reflections,R=0.038.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号