首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Light‐emitting diodes break barriers of size and performance for displays. With devices becoming smaller, the materials also need to get smaller. Chromium(III)‐doped oxide phosphors, which emit near‐infrared (NIR) light, have recently been used in small electronic devices. In this work, mesoporous silica nanoparticles were used as nanocarriers. The nanophosphor ZnGa2O4:Cr3+,Sn4+ formed in the mesopore after sintering. Good dispersity and morphology were performed with average diameters of 71±7 nm. It emitted light at 600–850 nm; the intensity was optimized by tuning the doping ratio of Cr3+ and Sn4+. Meanwhile, the light conversion efficiency increased from 7.8 % to 37 % and the molar concentration increased from 0.125 m to 0.5 m . The higher radiant flux of 3.3 mW was obtained by operating an input current of 45 mA. However, the NIR nanophosphor showed good performance on mini light‐emitting diode chips.  相似文献   

6.
7.
8.
9.
10.
A Green Paramagnetic Gold Fluoride – Sn1?xAuxF4? Green single crystals were obtained by heating (Au-tube, 450° – 500°C) a mixture of SnF2 and AuF3 (Sn : Au = 1 : 1) which correspond to the SnF4-type [2, 3] (two single crystals, A: 762 Io, R1 = 2.4%; B: 1591 Io, R1 = 1.2% (SHELXL-93); I4/mmm (No. 139); B: a = 404.8(1) pm, c = 796.4(1) pm, c/a = 1.97, ZF2 = 0.2354). Due to atom absorption and Mössbauer measurements the crystals contain Au. The compound is paramagnetic and follows the Curie-Weiß law (14.7–251.3 K, θ = ?12 K, μ/μB = 1.55). ESR-experiments confirm that Au is surrounded by 6 F? according to Sn in SnF4 (2 short (187.5 pm) and 4 longer (202.4 pm) distances). The observed Mössbauer spectra could not be interpreted yet, but they don't correspond to any known.  相似文献   

11.
12.
13.
Fe4Si2Sn7O16: A Combination of FeSn6-Octahedra with Layers of (Fe3Sn)O6-Octahedra; Preparation, Properties, and Crystal Structure Fe4Si2Sn7O16 has been prepared by a solid state reaction at 900 °C from a mixture of Fe2O3, SnO2, Sn, and Si. The compound is a paramagnetic semiconductor. Results of Mössbauer and suszeptibility measurements as well as bond length-bond strength calculations lead to the possible ionic formulation Fe42+Si24+Sn12+Sn14+O162–. The compound crystallizes in the trigonal space group P3m1 (no. 164), with one formula unit per cell. Lattice parameters obtained by powder measurements are: a = 6.8243(6) Å, c = 9.1404(6) Å, γ = 120°, V = 368.6(1) Å3. The structure consists of layers of edge linked oxygen octehedra exactly centered by Sn and Fe in the ratio 1 : 3. Three plains of isolated SiO4 tetrahedra, FeSn6 octahedra and again SiO4 terahedra are inserted between two such layers. The layers are stacked along [001] and linked three-dimensionally by oxygen.  相似文献   

14.
15.
16.
17.
18.
19.
Die Übersetzung basiert auf der „Terminology for Compounds in the Si‐Al‐O‐N System“ der Commission on High Temperature Materials and Solid State Chemistry der Inorganic Chemistry Division der International Union of Pure and Applied Chemistry, veröffentlicht in Pure Appl. Chem. 1999 , 71, 1765–1769. Das Original wurde von R. Metselaar, Technische Universiteit Eindhoven (Niederlande) und D. S. Yan, Academia Sinica, Shanghai (China) für die Veröffentlichung vorbereitet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号