首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A synthetic method to stereoselectively prepare 4‐(cyclohexa‐1,3‐dienyl)‐1,3‐dioxolanes in good to excellent yields by gold(I)‐catalyzed [2+2+1] cycloaddition of 1,6‐diyne carbonates and esters with aldehydes is described. The cascade process involves 1,2‐acyloxy migration followed by cyclopropenation and cycloreversion. This leads to an unprecedented [2+2+1] cycloaddition of the resulting alkenylgold carbenoid species, examples of which are extremely rare, with two aldehyde molecules at catalyst loadings as low as 1 mol %. The usefulness of this cycloisomerization chemistry was further demonstrated by the transformation of one example to the corresponding phenol.  相似文献   

3.
4.
5.
A contractile dendritic motional device is reported where metal ions with biological importance—Ca2+ (the main regulatory and signaling species of the natural muscles), Mg2+, and Zn2+—initiate two kinds of motional functions. The first motional function is the metal‐ion‐induced contraction of a linear strand into a Z‐shaped dinuclear complex, and the second one is the change of the height of Z‐shaped complexes via transmetalation. By means of the pH‐dependent counterligand tren, the two motional features of the machine can depend on alternate additions of acid and base. An optical response is associated with the conversion of the linear form (which is yellow) into the metalated Z‐shaped one (which is red).  相似文献   

6.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

7.
8.
Treatment of 1‐aryl‐1‐allen‐6‐enes with [PPh3AuCl]/AgSbF6 (5 mol %) in CH2Cl2 at 25 °C led to intramolecular [3+2] cycloadditions, giving cis‐fused dihydrobenzo[a]fluorene products efficiently and selectively. The reactions proceeded with initial formation of trans/cis mixtures of 2‐alkyl‐1‐isopropyl‐2‐phenyl‐1,2‐dihydronaphthalene cations B, which were convertible into the desired cis‐fused cycloadducts through the combined action of a gold catalyst and a Brønsted acid. Theoretic calculation supports the participation of the trans‐B cation as reaction intermediate. Although HOTf showed similar activity towards several 1‐aryl‐1‐allen‐6‐enes, it lacks generality for this cycloaddition reaction.  相似文献   

9.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

10.
A facile approach was developed on assembly of the 2‐pyridone nucleus by ferric chloride promoted [3+3] cycloaddition in propionic acid. The tandem process involves cyclization of Michael adduct followed by aromatization. Thus, different substituted 1,2‐dihydro‐2‐oxo‐3‐pyridinecarboxylate and 1,2‐dihydro‐2‐oxo‐3‐pyridinecarboxamide derivatives were prepared in good yields from various enones with malonamic ester and malonamide, respectively  相似文献   

11.
Irradiation of HX (X=CF3SO3 or CF3CO2) salts of 1‐aryl‐4‐pyridylbutadienes 1 a – 1 c in the solid‐state afforded syn head‐to‐tail dimers in good yields among a number of possible dimers, whereas irradiation of the neutral substrates gave a complex mixture or no products. A comparison of the X‐ray crystal structures of the neutral compounds and the HX salts clarified that their orientation modes are head‐to‐head and head‐to‐tail, respectively. Moreover, while the distances between the two neighboring double bonds of the neutral compounds are relatively far apart from each other, those of HX salts are close together, satisfying Schmidt's requirement. These findings suggested that cation‐π interactions between the pyridinium and aromatic rings are effective for the preorientation of the HX salts of substrates, leading to photodimers in high regio‐ and stereoselectivities.  相似文献   

12.
Quantum mechanics is used in this article to study one‐carbon unit's transfer from 1,10‐tetrahydroquinoxaline analog to methylamine. The computation result shows this reaction can be completed via two paths. Each path experiences two processes of proton transferring and bond rupturing. The structures and energies of all possible stationary points have been calculated by different methods. By analyzing the result, we can find that along the reaction route the proton transfer reaction has the highest energy barrier, which indicates that a general‐acid catalysis exists in this reaction. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

13.
Over the past years, the metal‐catalyzed dearomative cycloaddition of 3‐nitroindoles and 2‐nitrobenzofurans have emerged as a powerful protocol to construct chiral fused heterocyclic rings. However, organocatalytic dearomative reaction of these two classes of heteroarenes has become a long‐standing challenging task. Herein, we report the first example of phosphine‐catalyzed asymmetric dearomative [3+2]‐cycloadditio of 3‐nitroindoles and 2‐nitrobenzofurans, which provide a new, facile, and efficient protocol for the synthesis of chiral 2,3‐fused cyclopentannulated indolines and dihydrobenzofurans by reacting with allenoates and MBH carbonates, respectively through a dearomative [3+2]‐cycloaddition.  相似文献   

14.
While halogenated nucleosides are used as common anticancer and antiviral drugs, naturally occurring halogenated nucleosides are rare. Adechlorin (ade) is a 2′‐chloro nucleoside natural product first identified from Actinomadura sp. ATCC 39365. However, the installation of chlorine in the ade biosynthetic pathway remains elusive. Reported herein is a Fe2+‐α‐ketoglutarate halogenase AdeV that can install a chlorine atom at the C2′ position of 2′‐deoxyadenosine monophosphate to afford 2′‐chloro‐2′‐deoxyadenosine monophosphate. Furthermore, 2′,3′‐dideoxyadenosine‐5′‐monophosphate and 2′‐deoxyinosine‐5′‐monophosphate can also be converted, albeit 20‐fold and 2‐fold, respectively, less efficiently relative to the conversion of 2′‐deoxyadenosine monophosphate. AdeV represents the first example of a Fe2+‐α‐ketoglutarate‐dependent halogenase that converts nucleotides into chlorinated analogues.  相似文献   

15.
5‐(2‐Cyanoethyl)‐1,1′‐biphenyl‐2‐carboxylates were prepared by regioselective formal [3+3] cyclocondensations of 1,3‐bis[(trimethylsilyl)oxy]buta‐1,3‐dienes.  相似文献   

16.
17.
Acetonitrile and [FXeOXe‐ ‐ ‐FXeF][AsF6] react at ?60 °C in anhydrous HF (aHF) to form the CH3CN adduct of the previously unknown [XeOXe]2+ cation. The low‐temperature X‐ray structure of [CH3CN‐ ‐ ‐XeOXe‐ ‐ ‐NCCH3][AsF6]2 exhibits a well‐isolated adduct‐cation that has among the shortest Xe?N distances obtained for an sp‐hybridized nitrogen base adducted to xenon. The Raman spectrum was fully assigned by comparison with the calculated vibrational frequencies and with the aid of 18O‐enrichment studies. Natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe?O bonds are semi‐ionic whereas the Xe?N bonds may be described as strong electrostatic (σ‐hole) interactions.  相似文献   

18.
The [4+2] cycloaddition of 3‐(arylsulfanyl)‐1‐(trimethylsilyloxy)buta‐1,3‐dienes with dimethyl penta‐2,3‐dienedioate provides a convenient and regioselective approach to a variety of 4‐(arylsulfanyl)‐2‐hydroxyhomophthalates.  相似文献   

19.
Chemoselective synthesis of 4‐oxo‐2‐aryl‐4,10‐dihydropyrimido[1,2‐a][1,3]benzimidazol‐3‐yl cyanides from three‐component reactions of 2‐aminobenzimidazole, aldehydes, and ethyl cyanoacetate via [3+3] atom combination is reported. The effect of different base catalysts such as sodium acetate, triethylamine, and magnesium oxide MgO on the product yield has also been investigated under conventional heating. J. Heterocyclic Chem., (2011).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号