首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Zhou YY  Wang SW  Kim KN  Li JH  Yan XP 《Talanta》2006,69(4):970-975
Dichlorodiphenyltrichloroethane (DDT) and its metabolites are a typical kind of persistent organic pollutants (POPs). Development of a simple, cost-effective and sensitive methodology to monitor DDTs concentrations in water environment is of particular significance for understanding the fate and behavior of these pollutants. In this paper, a method on the basis of solid-phase extraction (SPE) using expanded graphite (EG) as sorbent coupled on-line with high performance liquid chromatography (HPLC) was developed for the determination of trace levels of p,p′-DDD (2,2-bis(4-chlorophenyl)-1,1-dichloroethane), p,p′-DDT, o,p′-DDT and p,p′-DDE (2,2-bis(4-chlorophenyl)-1,1-dichloroethene) in water. The analytes in water were preconcentrated onto the SPE column packed with expanded graphite, and subsequently eluted with methanol-water (90:10) mixed solvent. HPLC with a photodiode array detector was used for their separation and detection. The developed on-line solid-phase extraction protocol for HPLC permits the current HPLC separation and the next preconcentration proceeded in parallel, and thus allows one determination within 8 min. The precision (R.S.D.) for 10 replicate injections of a mixture of 1 μg l−1 of each analyte was 3.2-6.2% for the peak area measurement. The detection limits (S/N = 3) for preconcentrating 50 ml of sample solution ranged from 10 to 25 ng l−1 at a sample throughput of 7.5 samples h−1. The enhancement factors were about 700. The method was applied to the determination of trace p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE in local lake, river and tap water samples.  相似文献   

2.
A procedure based on QuEChERS extraction and a simultaneous liquid–liquid partition clean-up was developed. The procedure involved extraction of hydrated soil samples using acetonitrile and clean-up by liquid–liquid partition into n-hexane. The hexane extracts produced were clean and suitable for determination using gas chromatography–tandem mass spectrometry (GC–MS/MS). The method was validated by analysis of soil samples, spiked at five levels between 1 and 200 μg kg−1. The recovery values were generally between 70 and 100% and the relative standard deviation values (%RSDs) were at or below 20%. The procedure was validated for determination of 19 organochlorine (OC) pesticides. These were hexachlorobenzene (HCB), α-HCH, β-HCH, γ-HCH, heptachlor, heptachlor epoxide (trans), aldrin, dieldrin, chlordane (trans), chlordane (cis), oxychlordane, α-endosulfan, β-endosulfan, endosulfan sulfate, endrin, p,p′-DDT, o,p′-DDT, p,p′-DDD and p,p′-DDE. The method achieved low limits of detection (LOD; typically 0.3 μg kg−1) and low limits of quantification (LOQ; typically 1.0 μg kg−1). The method performance was also assessed using five fortified soil samples with different physico-chemical properties and the method performance was consistent for the different types of soil samples. The proposed method was compared with an established procedure based on Soxtec extraction. This comparison was carried out using six soil samples collected from regions of Pakistan with a history of intensive pesticide use. The results of this comparison showed that the two procedures produced results with good agreement. The proposed method produced cleaner extracts and therefore led to lower limits of quantification. The proposed method was less time consuming and safer to use. The six samples tested during this comparison showed that soils from cotton growing regions contained a number of persistent OC residues at relatively low levels (<10 μg kg−1). These residues were α-HCH, γ-HCH, heptachlor, chlordane (trans), p,p′-DDT, o,p′-DDT, p,p′-DDD, p,p′-DDE, β-endosulfan and endosulfan sulfate.  相似文献   

3.
Dichlorodiphenyltrichloroethane (DDT) and its main metabolites are important environmental pollutants and have been in the focusing center. It is of great value to develop simple, rapid, sensitive and easy to operate method for monitoring them. Present work established a novel temperature controlled ionic liquid dispersive liquid phase microextraction method in combination with high performance liquid chromatography for the enrichment and determination of DDT and its metabolites. Proposed method used only ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) for the enrichment and overcame the demerits of conventional single drop liquid phase microextraction and dispersive liquid-liquid microextraction. Temperature has two functions here, one is to promote the dispersing of ionic liquid into the solution and forming infinitesimal micro-drop and increasing the chance of the analytes extracted into ionic liquid phase, and the other one is to perform phase-separation. A series of factors that would affect the extraction performance was systematically investigated and optimized. The experimental results indicated that the detection limits obtained for p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE were 0.24, 0.24, 0.45, 0.24 ng mL−1, respectively. The linear ranges for them were from 1.0 to 100 ng mL−1, and the precisions were between 3.8% and 6.7% (n = 6). The proposed method was validated with four real-world samples and excellent results were achieved.  相似文献   

4.
The organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control in certain areas of South Africa. The strict Stockholm Convention on Persistent Organic Pollutants (POPs) allows spraying on the inside of traditional dwellings with DDT. In rural villages contaminated dust presents an additional pathway for exposure to DDT. We present a new method for the determination of DDT in indoor air where separate vapour and particulate samples are collected in a single step with a denuder configuration of a multi-channel open tubular silicone rubber (polydimethylsiloxane (PDMS)) trap combined with a micro quartz fibre filter. The multi-channel PDMS trap section of the denuder concentrates vapour phase insecticide whereas particle associated insecticide is transferred downstream where it is collected on a micro-fibre filter followed by a second multi-channel PDMS trap to capture the blow-off from the filter. The multi-channel PDMS trap and filter combination are designed to fit a commercial thermal desorber for direct introduction of samples into a GC–MS. The technique is solvent-free. Analyte extraction and sample clean-up is not required. Two fractions, vapour phase and particulate phase p,p′-DDT, o,p′-DDT; p,p′-DDD, o,p′-DDD; p,p′-DDE and o,p′-DDE in 4 L contaminated indoor air, were each quantitatively analysed by GC–MS using isotopically labelled ring substituted 13C12p,p′-DDT as an internal standard. Limits of detection were 0.07–0.35 ng m−3 for p,p′-DDT, o,p′-DDT, p,p′-DDD, o,p′-DDD, p,p′-DDE and o,p′-DDE. Ratios of airborne p,p′-DDD/p,p′-DDT and of o,p′-DDT/p,p′-DDT are unusual and do not match the ideal certified ingredient composition required of commercial DDT. Results suggest that the DDT products used for indoor residual spraying (IRS) prior to, and during 2007, may have been compromised with regards to insecticidal efficacy, demonstrating the power of this new environmental forensics tool.  相似文献   

5.
An approach to the synthesis of hydroxyl-terminated polymethylphenylsiloxane (PMPS-OH) was proposed and the synthesized PMPS-OH was successfully applied as a precursor to prepare a novel coating for solid-phase microextraction (SPME) via the sol-gel process. The thickness and length of the prepared coating was 70 μm and 1.5 cm, respectively. The extraction efficiency of the PMPS-coated fiber for selected pesticides was higher than that of commercial fibers including 100 μm polydimethylsiloxane (PDMS), 85 μm polyacrylate (PA) and 65 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB). The influence of the extraction process, extraction temperature, extraction time, stirring rate, ionic strength, GC inlet conditions, desorption temperature and time for PMPS-coated fiber application was studied and optimized. Several experiments were carried out to evaluate the analytical characteristics of the proposed SPME-GC-ECD method under optimized conditions. The linearity was from 0.5 to 100 ng g−1 for p,p′-DDE, p,p′-DDD and bifenthrin, and from 2 to 100 ng g−1 for o,p′-DDT, p,p′-DDT, fenpropathrin, beta-cyfluthrin and cyhalothrin. The detection limits of these pesticides were between 0.13 and 1.45 ng g−1. The recovery of the pesticides spiked in various vegetables at 4 ng g−1 ranged from 42.9% to 105.3%, and the relative standard deviations were less than 16.2%.  相似文献   

6.
A photocatalytic degradation method was developed for polychlorobiphenyl (PCB) and organochloride pesticide (OCP) discrimination and quantification. A mixture of Aroclor 1260 and p,p′-DDT was irradiated at 254 nm by UV lamp (40 W) in the presence of TiO2 (30 mg mL−1 non-aqueous solution). Comparison of gas chromatograms showed that p,p′-DDT signals decreased significantly after irradiation, while Aroclor 1260s chromatograms did not show any difference before and after irradiation. Detection limits were 0.30 mg L−1 and 0.15 mg L−1 for p,p′-DDT and Aroclor 1260, respectively. The method was applied to spiked egg samples, the recoveries were found as 72% for DDT and 82.01% for Aroclor 1260.  相似文献   

7.
Natalia Campillo 《Talanta》2007,71(3):1417-1423
A direct immersion solid-phase microextraction (SPME) procedure was used in combination with capillary gas chromatography with atomic emission detection (GC-AED) for the determination of 10 pesticides (organochlorines, organophosphorus compounds and pyrethrins) in herbal and tea infusions. Ionic strength, sample dilution and time and temperature of the absorption and desorption stages were some of the parameters investigated in order to select the optimum conditions for SPME with a 100 μm PDMS fiber-coating. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) and bromine (478 nm) emission lines, which provided nearly specific chromatograms. Calibration was carried out by using a spiked sample infusion. The detection limits varied between 11.9 ng ml−1 for deltamethrin and 0.03 ng ml−1 for p,p′-DDE and p,p′-DDD. The recoveries ranged from 73.5% for deltamethrin to 108.3% for p,p′-DDT in a spiked white tea infusion. Two of the eight samples analyzed contained low levels of some the pesticides considered.  相似文献   

8.
An electrochemical enzyme-linked immunosorbent assay (ELISA) for the detection of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DTT), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′-DDE), 1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane (p,p′-DDD) and o,p-DDT was developed. Optimization of the ELISA competition conditions, led to similar response for the p,p′-isomers. The activity of the label enzyme (horseradish peroxidase) was measured electrochemically using 3,3′,5,5′-tetramethylbenzidine as substrate. The use of purified antiserum for p,p′-DDT resulted in a sensitive assay with a detection limit of 40 pg ml−1 and R.S.D. ranging from 1 to 3% intra-day and 3 to 6% inter-day. No matrix effect for waste water samples of different origin has been evidenced. The ELISA was used to detect DDTs in 20 samples after extraction in diethylether. This method appears suitable for routine screening of DDTs without sample pre-treatment other than dilution in PBS or after organic solvent extraction if high sensitivity is required.  相似文献   

9.
Ultrasonic solvent extraction of organochlorine pesticides from soil   总被引:1,自引:0,他引:1  
Ultrasonic solvent extraction of the organochlorine pesticides (OCP) including α-, β-, γ- and Δ-hexachlorocyclohexane (HCH), heptachlor, aldrin, o,p′-DDE, dieldrin, p,p′-DDE, p,p′-DDT, methoxychlor, mirex from soil is reported. The extraction procedure was optimized with regard to the solvent type, amount of solvent, duration of sonication and number of extraction steps. Determination of pesticides was carried out by gas chromatography (GC) equipped with electron capture detection (ECD). Twice ultrasonic extraction using 25 mL of a mixture of petroleum ether and acetone (1/1 v/v) for 20 min of sonication showed satisfactory extraction efficiency. Recoveries of pesticides from fortified soil samples are over 88% for three different fortification levels between 15 and 200 μg kg−1, and relative standard deviations of the recoveries are generally below 6%. Real soil samples were analyzed for OCP residues by optimized ultrasonic solvent extraction and shake-flask as well as soxhlet extraction technique. Investigated all extraction methods showed comparable extraction efficiencies. Optimized ultrasonic solvent extraction is the most rapid procedure because the use of time in ultrasonic extraction was considerably reduced compared to shake-flask and soxhlet extraction.  相似文献   

10.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

11.
A gas chromatography–tandem mass spectrometric (GC–MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L−1 of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60 °C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC–MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L−1 and 0.07 μg L−1 in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y = 0.7140x + 0.1997 and r2 = 0.9963 (for a working range of 0.07–10 μg L−1) and the accuracy was in a range of 98–102%; the precision of the assay was less than 7% in surface water. The common ions Cl, F, Br, NO3, SO42−, PO43−, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+, Fe2+ and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07–0.11 μg L−1 in 6 of 10 surface water samples.  相似文献   

12.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

13.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

14.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

15.
Liang Y  Liu XJ  Liu Y  Yu XY  Fan MT 《Analytica chimica acta》2008,615(2):174-183
A general and broad class-specific enzyme-linked immunosorbent assay was developed for the O,O-dimethyl organophosphorus pesticides, including malathion, dimethoate, phenthoate, phosmet, methidathion, fenitrothion, methyl parathion and fenthion. Three haptens with different spacer-arms were synthesized. The haptens were conjugated to bovine serum albumin (BSA) for immunogens and to ovalbumin (OVA) for coating antigens. Rabbits were immunized with the immunogens and six polyclonal antisera were produced and screened against each of the coating antigens using competitive indirect enzyme-linked immunosorbent assay for selecting the proper antiserum. The effect of hapten heterology on immunoassay sensitivity was also studied. The antibody-antigen combination with the most selectivity for malathion was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50 values, under optimum conditions, were estimated to be 30.1 μg L−1for malathion, 28.9 μg L−1 for dimethoate, 88.3 μg L−1 for phenthoate, 159.7 μg L−1 for phosmet, 191.7 μg L−1 for methidathion, 324.0 μg L−1 for fenitrothion, 483.9 μg L−1 for methyl parathion, and 788.9 μg L−1 for fenthion. Recoveries of malathion, dimethoate, phenthoate, phosmet and methidathion from fortified Chinese cabbage samples ranged between 77.1% and 104.7%. This assay can be used in monitoring studies for the multi-residue determination of O,O-dimethyl organophosphorus pesticides.  相似文献   

16.
17.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

18.
Zhou Q  Gao Y  Xie G 《Talanta》2011,85(3):1598-1602
Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C8MIM][PF6], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L−1 for BPA, 1.5-150 μg L−1 for 4-NP, and 3-300 μg L−1 for 4-OP, respectively. Limits of detection (LOD, S/N = 3) were in the range of 0.23-0.48 μg L−1. Intra day and inter day precisions (RSDs, n = 6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained.  相似文献   

19.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

20.
A simple and sensitive electroanalytical method is developed for the determination of lead by adsorptive stripping voltammetry (AdSV) in the presence of morin-5′-sulfonic acid (MSA) and sodium dodecyl sulfate (SDS). The Pb-MSA complex accumulates on the surface of a hanging mercury drop electrode (HMDE) and peak current is measured by square wave voltammetry (SWV). The complex is reduced at −0.48 V and peak current increases when low concentrations of SDS are added to the sample solution. The experimental variables pH, MSA concentration (CMSA); accumulation time (tacc); accumulation potential (Eacc), and SDS concentration (CSDS), as well as potential interferences, are investigated. Under the optimized conditions (pH 3.2; CMSA: 0.5 μmol L−1; tacc: 60 s; Eacc: −0.35 V, and CSDS: 20 μmol L−1), peak current is proportional to the concentration of Pb(II) over the 0.1-32.0 μg L−1 range, with a detection limit of 0.04 μg L−1. The relative standard deviation for a solution containing 5.0 μg L−1 of Pb(II) solution was 1.5% for seven successive assays. The method was validated by determining Pb(II) in synthetic sea water (ASTM D665) spiked with ICP multi-element standard solution and in certified reference water (GBW08607). Finally, the method was successfully applied to the determination of Pb(II) in tap water and sea water after UV digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号