首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Optimization of immobilization conditions was carried out for covalent binding of Aureobasidium pullulans fructosyltransferase to a copolymer of butyl acrylate and ethylene glycol dimethacrylate using a glutaraldehyde method. It was found that the highest activity of the preparation could be obtained for the immobilization pH 6.0 and initial protein amount 8.5 g per dm3 of the carrier. Effects of the reaction pH, temperature, and initial sucrose concentration on the activity and stability of the preparation were analyzed. Further investigations involved storage stability and operational stability in a mechanically stirred-tank reactor.  相似文献   

2.
β-galactosidase from Penicillium canescens was immobilized on chitosan, sepharose-4B, foamable polyurethane and some other carriers. The highest yield of immobilization (up to 98%) was obtained by using chitosan as a carrier. The optimum pH and temperature were not significantly altered by immobilization. High stability of immobilized β-galactosidase during storage was demonstrated. Efficient lactose saccharification (over 90%) in whey was achieved by using immobilized β-galactosidase.  相似文献   

3.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

4.
Different materials containing carboxylic groups have been functionalized with geranyl-amine molecules by using an EDC/NHS strategy. Chemical modification of the support was confirmed by XRD, UV-spectrophotometer, and FT-IR. This geranyl-functionalized material was successfully applied for four different strategies of site-selective immobilization of proteins at room temperature and aqueous media. A reversible hydrophobic immobilization of proteins (lipases, phosphoglucosidases, or tyrosinase) was performed in neutral pH in yields from 40 to >99%. An increase of the activity in the case of lipases was observed from a range of 2 to 4 times with respect to the initial activity in solution. When chemically or genetically functionalized cysteine enzymes were used, the covalent immobilization, via a selective thiol-alkene reaction, was observed in the presence of geranyl support at pH 8 in lipases in the presence of detergent (to avoid the previous hydrophobic interactions). Covalent attachment was confirmed with no release of protein after immobilization by incubation with hydrophobic molecules. In the case of a selenium-containing enzyme produced by the selenomethionine pathway, the selective immobilization was successfully yielded at acidic pH (pH 5) (89%) much better than at pH 8. In addition, when an azido-enzyme was produced by the azide–homoalanine pathway, the selective immobilization was successful at pH 6 and in the presence of CuI for the click chemistry reaction.  相似文献   

5.
A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.  相似文献   

6.
Cyclodextrin glycosyltransferase (CGTase) isolated and purified from Paenibacillus sp. A11 was immobilized on various carriers by covalent linkage using bifunctional agent glutaraldehyde. Among tested carriers, alumina proved to be the best carrier for immobilization. The effects of several parameters on the activation of the support and on the immobilization of enzyme were optimized. The best preparation of immobilized CGTase retained 31.2% of its original activity. After immobilization, the enzymatic properties were investigated and compared with those of the free enzyme. The optimum pH of the immobilized CGTase was shifted from 6.0 to 7.0 whereas optimum temperature remained unaltered (60°C). Free and immobilized CGTase showed similar pH stability profile but the thermal stability of the immobilized CGTase was 20% higher. Kinetic data (K M and V max) for the free and immobilized enzymes were determined from the rate of β-CD formation and it was found that the immobilized form had higher K M and lower V max. The immobilized CGTase also exhibited higher stability when stored at both 4°C and 25°C for 2 months. The enzyme immobilized on alumina was further used in a batch production of 2-O-α-glucopyranosyl-l-ascorbic acid (AA-2G) from ascorbic acid and β-cyclodextrin. The yield of AA-2G was 2.92% and the immobilized CGTase retained its activity up to 74.4% of the initial catalytic activity after being used for 3 cycles. The immobilized CGTase would have a promising application in the production of various transglycosylated compounds and in the production of cyclodextrin by the hydrolysis of starch.  相似文献   

7.
The design of a novel polymer‐modified overlayer composed of PPAPE and GPMS on a silicon wafer for immobilization of DNA molecules is described. After hydroxylation of Si(100) surfaces, GPMS molecules were self‐assembled onto these surfaces. PPAPE molecules were then covalently attached to the epoxy‐terminated surfaces. The incubation time and concentration of PPAPE was found to effect both layer thickness and water CA. The type of organic solvent and the pH were found to change the nature of the PPAPE‐modified surface for DNA immobilization. It is concluded that PPAPE‐modified surfaces show advantages for DNA immobilization by electrostatic interactions between DNA molecules and positively charged free amino groups of the PPAPE‐modified surfaces at the appropriate pH values.

  相似文献   


8.
We report a protein attachment and patterning method based on a hydroquinone-caged biotin surface that generates bioactive biotin by mild electrochemical perturbation. The electrochemical activation proceeds under the buffered aqueous environment at neutral pH. It also allows site-selective generation of bioactive biotin for the immobilization of target protein by using prepatterned electrode arrays.  相似文献   

9.
A unique urea biosensor construction based on the direct covalent attachment of urease onto a polymeric electron transfer mediator, poly(glycidyl methacrylate-co-vinylferrocene)-coated electrode is described. Amperometric response was measured as a function of urea concentration, at a fixed potential of +0.35 V vs. Ag/AgCl in phosphate-buffered saline (pH 7.0). Covalent immobilization of the urease directly to the functionalized ferrocene copolymer surface produced biosensors with a short response time (about 3 s) and provided low detection limits. The stability, reusability, pH, and temperature response of the biosensor, besides its kinetic parameter, were also studied.  相似文献   

10.
The use of modified sol–gel matrix to immobilize the enzyme Candida antartica lipase B (CALB) was investigated. Free hydroxyl groups on the matrix surface were exploited to covalently immobilize the enzyme. Based from the results, incorporating hydrophobic sol–gel precursor (ethyltrimethoxysilane) enhanced enzyme activity. An enzyme activity of 192.02 U/g beads with 80.88 % attachment was obtained. At alkaline pH, immobilization yield of enzyme increased. The attachment of enzyme on the surface of the matrix was confirmed by scanning electron microscope images. Covalently immobilized CALB on sol–gel supports has higher thermal stability with 2.7 times higher half-life compared to soluble enzymes at 60 °C. This enzyme immobilization system retains the enzyme residual activity even for repetitive use. Hence, the immobilization approach developed recommends its further application.  相似文献   

11.
Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.  相似文献   

12.
Immobilization methods and carriers were screened for immobilization of Euglena gracilis extract with laminaribiose phosphorylase activity. The extract was successfully immobilized on three different carriers via covalent linkage. Suitable immobilization carriers were Sepabeads EC-EP/S and ECR 8209M with epoxy groups and ECR 8309M with amino groups as functional units. Immobilization on Sepabeads EC-EP/S resulted in highest retained activity (65%). The immobilizates were characterized for pH, temperature, and buffer molarity preferences. The immobilized enzyme lost 48% of its activity when used seven times. Together with sucrose phosphorylase, laminaribiose phosphorylase was successfully applied for bienzymatic production of laminaribiose from sucrose and glucose with a final laminaribiose concentration of 14.3 ± 2.1 g/L (20% yield).  相似文献   

13.
硅基芯片表面化学性质对蛋白质固定化的影响   总被引:1,自引:0,他引:1  
制备蛋白质芯片的关键在于将蛋白质固定到芯片表面并保持其生物学活性.本实验中,我们分别采用物理吸附、直接化学固定、加入间隔臂化学固定和生物亲和作用固定的方法将癌胚抗原(CEA)抗体固定到硅基芯片的二氧化硅表面.基于抗原-抗体的特异性相互作用,利用双抗体夹心酶联免疫法(ELISA)评价各种方法固定抗体的效果.实验结果表明,在修饰有氨基的表面采用戊二醛作为偶联试剂固定CEA抗体具有最高的偶联效率,引入多聚赖氨酸(poly-L-lysine)作为间隔臂可以显著增强固定效果,并可进一步降低非特异性吸附.而利用生物亲和作用固定CEA抗体也可获得较好的固定效果,但是非特异性吸附较严重.  相似文献   

14.
Thermoanaerobacter cyclomaltodextrin glucanotransferase (CGTase) was immobilized using different supports and immobilization methods to study the effect on activity recovery. The enzyme covalently attached into glyoxyl-silica showed low activity recovery of 1.5%. The hydrophobic adsorption of the enzyme on Octadecyl-Sepabeads yielded also low activity recovery, 3.83%, and the enzyme could easily leak from the support at low ionic strength, although the immobilization yield was satisfactory, approximately 76%. The CGTase encapsulated in a sol–gel matrix gave an activity recovery of 6.94% and maximum cyclization activity at 60 °C, at pH 6.0. The half-time life at 60 °C, pH 6.0, in the presence of substrate was 100 min, which was lower than that of the free enzyme. The best activity recovery in this work (6.94%) is approximately five times smaller than that obtained previously using glyoxyl-agarose as support and covalent immobilization. Thus, the best support and method we tested so far for immobilization of CGTase is covalent attachment on glyoxyl-agarose.  相似文献   

15.
The immobilization patterns of enzymes on the surface of dispersed silicas were studied in order to obtain active heterogeneous preparations. The chemical nature of the activated silica matrices used have practically no influence on the optimal pH value of the immobilization and time of completion of this process, but determines mainly the degree of retention of activity of the grafted biocatalysts. The geometrical characteristics of the carriers influence to a great extent the rate of binding of the enzymes with the carriers and their capacity with respect to the protein.Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 26, No. 2, pp. 201–209, March–April, 1990.  相似文献   

16.
In this study, the immobilization characteristics of Enterococcus faecalis RKY1 for succinate production were examined. At first, three natural polymers—agar, κ-carrageenan, and sodium alginate—were tried as immobilizing matrices. Among these, sodium alginate was selected as the best gel for immobilization of E. faecalis RKY1. Efficient conditions for immobilization were established to be with a 2% (w/v) sodium alginate solution and 2-mm-diameter bead. The bioconversion characteristics of the immobilized cellsat various pH values and temperatures were examined and compared with those of free cells. The optimum pH and temperature of the immobilized cells were the same as for free cells, 7.0 and 38°C respectively, but the conversion ratio was higher by immobilization for all the other pH and temperature conditions tested. When the seed volume of the immobilized cells was adjusted to 10% (v/v), 30 g/L of fumarate was completely converted tosuccinate (0.973 g/g conversion ratio) after 12 h. In addition, the immobilized cells maintained a conversion ratio of >0.95 g/g during 4wk of storageat 4°C in a 2% (w/v) CaCl2 solution. In repetitive bioconversion experiments, the activity of the immobilized cells decreased linearly according to the number of times of reuse.  相似文献   

17.
合成了氨基以及氨基功能化离子液体修饰的介孔材料SBA-15(NH2-SBA和NH2-IL-SBA), 并以戊二醛为活化剂对NH2-IL-SBA进行活化处理(CA-NH2-IL-SBA), 通过元素分析、 N2吸附-脱附、 X射线衍射、 红外光谱等方法研究了修饰及活化对SBA-15结构的影响. 将所得新型固定化载体用于Burkholderia cepacia脂肪酶(BCL)的吸附固定、 共价交联固定及聚集包被固定. 以三乙酸甘油酯的水解为模型反应, 考察了固定化BCL的酶活、 最适反应条件、 稳定性等酶学性质. 结果表明, 离子液体修饰后的载体保持了原有的孔道结构, 与氨基修饰以及原粉SBA-15吸附固定的BCL(BCL-NH2-SBA和BCL-SBA-15)相比, 其固定化酶的比活力和稳定性都得到了明显提高, 对温度及低pH的敏感性降低. 其中聚集包被固定的BCL在获得了相对较高酶负载量的同时显示了最好的稳定性, 其热稳定性和重复使用性分别为BCL-SBA-15的4倍和2倍.  相似文献   

18.
The pigeonpea urease was immobilized on agar, a common gelling substance. The tablet strips were used as moulds to cast agar tablets of uniform shape and size. The time and temperature of solidification of agar was 6 min and 44 degrees C, respectively. The 5 % agar (w/v) and 0.019 mg protein/agar tablet yielded an optimum immobilization of 51.7%. The optimum pH was shifted through 0.2 U (from 7.3 to 7.5) towards basic side upon immobilization. The optimum temperature of soluble and immobilized urease was 30 degrees C and 60 degrees C, respectively, showing the improvement in thermal stability of urease. There was an increase in K m from 3.23 to 5.07 mM after immobilization. The half-lives of soluble and immobilized urease were 21 and 53 days, respectively, at pH 7.3 and 4 degrees C. The urea was estimated in different blood samples with the help of immobilized urease and the results were consistent with those from clinical pathology laboratory through an autoanalyzer (Zydus Co., Rome, Italy).  相似文献   

19.
An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.  相似文献   

20.
Mercuric reductase was isolated fromPseudomonas putida KT2442::mer-73 and immobilized on Chromatographic carriers activated by various methods. The immobilization methods for covalent coupling were compared with regard to preservation of enzymatic activity and coupling yields. Highest yields were obtained with carriers bearing the most reactive functional groups. Best results were achieved with tresyl chloride-activated carriers. The optimum binding conditions were found at pH 8. Application of the immobilized mercuric reductase for continuous treatment of Hg(II)-containing water was examined in a fixed bed reactor. Space-time yields up to 510 nmol/min-mL were attained. The kinetics of immobilized enzyme systems were not diffusion-controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号