首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Queueing Framework for Routing Problems with Time-dependent Travel Times   总被引:1,自引:0,他引:1  
Assigning and scheduling vehicle routes in a dynamic environment is a crucial management problem. Despite numerous publications dealing with efficient scheduling methods for vehicle routing, very few addressed the inherent stochastic and dynamic nature of travel times. In this paper, a vehicle routing problem with time-dependent travel times due to potential traffic congestion is considered. The approach developed introduces the traffic congestion component based on queueing theory. This is an innovative modelling scheme to capture the stochastic behavior of travel times as it generates an analytical expression for the expected travel times as well as for the variance of the travel times. Routing solutions that perform well in the face of the extra complications due to congestion are developed. These more realistic solutions have the potential to reduce real operating costs for a broad range of industries which daily face routing problems. A number of datasets are used to illustrate the appropriateness of the novel approach. Moreover it is shown that static (or time-independent) solutions are often infeasible within a congested traffic environment which is generally the case on European road networks. Finally, the effect of travel time variability (obtained via the queueing approach) is quantified for the different datasets.   相似文献   

2.
介绍了一个求解有时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)的启发式算法——基于λ-交换的局部下降搜索算法(Local search descent method based on λ-interchange).VRPTW是指合理安排车辆行驶路线,为一组预先设定有时间限制的客户运送货物,在不违反时间要求和车辆容量限制的条件下使得成本最小.它是一个典型的NP-难题,可以通过启发式算法获得近优解来解决.通过两个实验验证,显示了局部下降搜索算法的优良性能,取得了很好的效果,可以作为进一步研究复杂算法的基础.  相似文献   

3.
This paper proposes a three-stage method for the vehicle-routing problem with time window constraints (VRPTW). Using the Hungarian method the optimal customer matching for an assignment approximation of the VRPTW, which is a travel time-based relaxation that partially respects the time windows, is obtained. The assignment matching is transformed into feasible routes of the VRPTW via a simple decoupling heuristic. The best of these routes, in terms of travelling and vehicle waiting times, form part of the final solution, which is completed by the routes provided by heuristic methods applied to the remainder of the customers. The proposed approach is tested on a set of standard literature problems, and improves the results of the heuristic methods with respect to total travel time. Furthermore, it provides useful insights into the effect of employing optimal travel time solutions resulting from the assignment relaxation to derive partial route sets of the VRPTW.  相似文献   

4.
时变条件下带时间窗车辆调度问题的模拟退火算法   总被引:1,自引:0,他引:1  
带时间窗车辆调度问题(VRPTW)是一类要求满足容积和时间窗约束的车辆路径优化问题,现 有大部分相关文献只考虑了车辆行驶速度恒定的情况,忽略了各种动态因素的影响.本文研究的时变条件下带时间窗车辆调度问题将车辆行驶速度考虑成时变分段函数,并利用模拟退火算法进行求解,最后通过实验结果说明算法的有效性.  相似文献   

5.
In this paper, we extend upon current research in the vehicle routing problem whereby labour regulations affect planning horizons, and therefore, profitability. We call this extension the multiperiod vehicle routing problem with profit (mVRPP). The goal is to determine routes for a set of vehicles that maximizes profitability from visited locations, based on the conditions that vehicles can only travel during stipulated working hours within each period in a given planning horizon and that the vehicles are only required to return to the depot at the end of the last period. We propose an effective memetic algorithm with a giant-tour representation to solve the mVRPP. To efficiently evaluate a chromosome, we develop a greedy procedure to partition a given giant-tour into individual routes, and prove that the resultant partition is optimal. We evaluate the effectiveness of our memetic algorithm with extensive experiments based on a set of modified benchmark instances. The results indicate that our approach generates high-quality solutions that are reasonably close to the best known solutions or proven optima, and significantly better than the solutions obtained using heuristics employed by professional schedulers.  相似文献   

6.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

7.
Vehicle routing problem with time windows (VRPTW) involves the routing of a set of vehicles with limited capacity from a central depot to a set of geographically dispersed customers with known demands and predefined time windows. The problem is solved by optimizing routes for the vehicles so as to meet all given constraints as well as to minimize the objectives of traveling distance and number of vehicles. This paper proposes a hybrid multiobjective evolutionary algorithm (HMOEA) that incorporates various heuristics for local exploitation in the evolutionary search and the concept of Pareto's optimality for solving multiobjective optimization in VRPTW. The proposed HMOEA is featured with specialized genetic operators and variable-length chromosome representation to accommodate the sequence-oriented optimization in VRPTW. Unlike existing VRPTW approaches that often aggregate multiple criteria and constraints into a compromise function, the proposed HMOEA optimizes all routing constraints and objectives simultaneously, which improves the routing solutions in many aspects, such as lower routing cost, wider scattering area and better convergence trace. The HMOEA is applied to solve the benchmark Solomon's 56 VRPTW 100-customer instances, which yields 20 routing solutions better than or competitive as compared to the best solutions published in literature.  相似文献   

8.
In the stochastic variant of the vehicle routing problem with time windows, known as the SVRPTW, travel times are assumed to be stochastic. In our chance-constrained approach to the problem, restrictions are placed on the probability that individual time window constraints are violated, while the objective remains based on traditional routing costs. In this paper, we propose a way to offer this probability, or service level, for all customers. Our approach carefully considers how to compute the start-service time and arrival time distributions for each customer. These distributions are used to create a feasibility check that can be “plugged” into any algorithm for the VRPTW and thus be used to solve large problems fairly quickly. Our computational experiments show how the solutions change for some well-known data sets across different levels of customer service, two travel time distributions, and several parameter settings.  相似文献   

9.
In the vehicle routing literature, there is an increasing focus on time-dependent routing problems, where the time (or cost) to travel between any pair of nodes (customers, depots) depends on the departure time. The aim of such algorithms is to be able to take recurring congestion into account when planning logistics operations. To test algorithms for time-dependent routing problems, time-dependent problem data is necessary. This data usually comes in the form of three-dimensional travel time matrices that add the departure time as an extra dimension. However, most currently available time-dependent travel time matrices are not network-consistent, i.e., the travel times are not correlated both in time and in space. This stands in contrast to the behavior of real life congestion, which generally follows a specific pattern, appearing in specific areas and then affecting all travel times to and from those areas. As a result of the lack of available network-consistent travel time matrices, it is difficult to develop algorithms that are able to take this special structure of the travel time data into account.  相似文献   

10.
This paper provides a review of the recent developments that had a major impact on the current state-of-the-art exact algorithms for the vehicle routing problem (VRP). The paper reviews mathematical formulations, relaxations and recent exact methods for two of the most important variants of the VRP: the capacitated VRP (CVRP) and the VRP with time windows (VRPTW). The paper also reports a comparison of the computational performances of the different exact algorithms for the CVRP and VRPTW.  相似文献   

11.
In this paper we use a scatter search framework to solve the vehicle routing problem with time windows (VRPTW). Our objective is to achieve effective solutions and to investigate the effects of reference set design parameters pertaining to size, quality and diversity. Both a common arc method and an optimization-based set covering model are used to combine vehicle routing solutions. A reactive tabu search metaheuristic and a tabu search with an advanced recovery feature, together with a set covering procedure are used for solution improvement. Our approach led to a robust solution method, generating solution quality that is competitive with the current best metaheuristics.  相似文献   

12.
We propose a new population-based hybrid meta-heuristic for the periodic vehicle routing problem with time windows. This meta-heuristic is a generational genetic algorithm that uses two neighborhood-based meta-heuristics to optimize offspring. Local search methods have previously been proposed to enhance the fitness of offspring generated by crossover operators. In the proposed method, neighborhood-based meta-heuristics are used for their capacity to escape local optima, and deliver optimized and diversified solutions to the population of the next generation. Furthermore, the search performed by the neighborhood-based meta-heuristics repairs most of the constraint violations that naturally occur after the application of the crossover operators. The genetic algorithm we propose introduces two new crossover operators addressing the periodic vehicle routing problem with time windows. The two crossover operators are seeking the diversification of the exploration in the solution space from solution recombination, while simultaneously aiming not to destroy information about routes in the population as computing routes is NP-hard. Extensive numerical experiments and comparisons with all methods proposed in the literature show that the proposed methodology is highly competitive, providing new best solutions for a number of large instances.  相似文献   

13.
We address a variant of the vehicle routing problem with time windows that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. In addition, the objective function consists of minimizing a weighted sum of the total number of routes, number of deliverymen and traveled distance. These characteristics make this variant very challenging for exact methods. To date, only heuristic approaches have been proposed for this problem, and even the most efficient optimization solvers cannot find optimal solutions in a reasonable amount of time for instances of moderate size when using the available mathematical formulations. We propose a branch-price-and-cut method based on a new set partitioning formulation of the problem. To accelerate the convergence of the method, we rely on an interior-point column and cut generation process, a strong branching strategy and a mixed-integer programming-based primal heuristic. Additionally, a hierarchical branching strategy is used to take into account the different components of the objective function. The computational results indicate the benefits of using the proposed exact solution approach. We closed several instances of the problem and obtained upper bounds that were previously unknown in the literature.  相似文献   

14.
研究了基于交通流的多模糊时间窗车辆路径问题,考虑了实际中不断变化的交通流以及客户具有多个模糊时间窗的情况,以最小化配送总成本和最大化客户满意度为目标,构建基于交通流的多模糊时间窗车辆路径模型。根据伊藤算法的基本原理,设计了求解该模型的改进伊藤算法,结合仿真算例进行了模拟计算,并与蚁群算法的计算结果进行了对比分析,结果表明,利用改进伊藤算法求解基于交通流的多模糊时间窗车辆路径问题,迭代次数小,效率更高,能够在较短的时间内收敛到全局最优解,可以有效的求解多模糊时间窗车辆路径问题。  相似文献   

15.
Transportation is an important component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routes is a crucial management problem. In this paper, a vehicle routing problem with dynamic travel times due to potential traffic congestion is considered. The approach developed introduces mainly the traffic congestion component based on queueing theory. This is an innovative modeling scheme to capture travel times. The queueing approach is compared with other approaches and its potential benefits are described and quantified. Moreover, the optimization of the starting times of a route at the distribution center is evaluated. Finally, the trade-off between solution quality and calculation time is discussed. Numerous test instances are used, both to illustrate the appropriateness of the approach as well as to show that time-independent solutions are often unrealistic within a congested traffic environment, which is usually the case on European road networks.  相似文献   

16.
In many applications of the vehicle routing problem with time windows (VRPTW), goods must be picked up within desired time frames. In addition, they have some limitations on their arrival time to the central depot. In this paper, we present a new version of VRPTW that minimizes the total cycle time of the goods. In order to meet the time windows and also minimize the cycle time, the courier’s schedule is allowed to vary. An algorithm, named VeRSA, is proposed to solve this problem. VeRSA employs concepts of scheduling theorems and algorithms to determine feasible routes and schedules of the available couriers. We prove a theoretical lower bound that provides a useful bound on the optimality gap. We also conduct a set of numerical experiments. VeRSA obtains a feasible solution faster than solving the MIP. The optimality gap using our proposed lower bound is smaller than the gap found with the standard LP relaxation.  相似文献   

17.
行车时间估计和最优路径选择是智能交通系统中的研究热点,特别是对于车辆导航系统更具有深远的意义.首先以传统的交通流理论为基础,采用间接模型和动力学模型进行行车时间估计,通过仿真实验比较了两模型的优劣,并使用实测数据分析得到的车流量信息对动力学模型进行改进.然后使用Dijkstra算法寻找出静态状态下的最优路径,再结合前面建立的时间估计模型,给出了适用于动态随机状态下的路径寻优算法,用于解决路段行车时间期望随出发时刻动态变化的问题.最后指出了交通实时信息对解决动态随机最优路线问题的重要性,并结合卡尔曼滤波算法对路段相关的情况作了进一步讨论.  相似文献   

18.
In this article we introduce the vehicle routing problem with coupled time windows (VRPCTW), which is an extension of the vehicle routing problem with time windows (VRPTW), where additional coupling constraints on the time windows are imposed. VRPCTW is applied to model a real-world planning problem concerning the integrated optimization of school starting times and public bus services. A mixed-integer programming formulation for the VRPCTW within this context is given. It is solved using a new meta-heuristic that combines classical construction aspects with mixed-integer preprocessing techniques, and improving hit-and-run, a randomized search strategy from global optimization. Solutions for several randomly generated and real-world instances are presented.  相似文献   

19.
A heuristic algorithm is described for vehicle routing and scheduling problems to minimise the total travel time, where the time required for a vehicle to travel along any road in the network varies according to the time of travel. The variation is caused by congestion that is typically greatest during morning and evening rush hours. The algorithm is used to schedule a fleet of delivery vehicles operating in the South West of the United Kingdom for a sample of days. The results demonstrate how conventional methods that do not take time-varying speeds into account when planning, except for an overall contingency allowance, may still lead to some routes taking too long. The results are analysed to show that in the case study using the proposed approach can lead to savings in CO2 emissions of about 7%.  相似文献   

20.
Less-Than-Truckload (LTL) carriers generally serve geographical regions that are more localized than the inter-city line-hauls served by truckload carriers. That localization can lead to urban freight transportation routes that overlap. If trucks are traveling with less than full loads, there typically exist opportunities for carriers to collaborate over such routes. We introduce a two stage framework for LTL carrier collaboration. Our first stage involves collaboration between multiple carriers at the entrance to the city and can be formulated as a vehicle routing problem with time windows (VRPTW). We employ guided local search for solving this VRPTW. The second stage involves collaboration between carriers at transshipment facilities while executing their routes identified in phase one. For solving the second stage problem, we develop novel local search heuristics, one of which leverages integer programming to efficiently explore the union of neighborhoods defined by new problem-specific move operators. Our computational results indicate that integrating integer programming with local search results in at least an order of magnitude speed up in the second stage problem. We also perform sensitivity analysis to assess the benefits from collaboration. Our results indicate that distance savings of 7–15 % can be achieved by collaborating at the entrance to the city. Carriers involved in intra-city collaboration can further save 3–15 % in total distance traveled, and also reduce their overall route times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号