首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene “click”-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.  相似文献   

2.
Joel M. Pollino 《Tetrahedron》2004,60(34):7205-7215
A novel route to cross-linked and functionalized random copolymers using a rapid, one-step, and orthogonal copolymer cross-linking/functionalization strategy has been developed. Random terpolymers possessing high concentrations of pendant alkyl chains and either (1) palladated-pincer complexes and diaminopyridine moieties (DAD hydrogen-bonding entities) or (2) palladated-pincer complexes and cyanuric wedges (ADAADA hydrogen-bonding entities) have been synthesized using ring-opening metathesis polymerization. Non-covalent cross-linking of the resultant copolymers using a directed functionalization strategy leads to dramatic increases in solution viscosities for cross-linked polymers via metal-coordination while only minor changes in viscosity were observed when hydrogen-bonding motifs were employed for cross-linking. The cross-linked materials could be further functionalized via self-assembly by employing the second recognition motif along the polymeric backbones giving rise to highly functionalized materials with tailored cross-links. This novel non-covalent polymer cross-linking/functionalization strategy allows for rapid and tunable materials synthesis by overcoming many difficulties inherent to the preparation of covalently cross-linked polymers.  相似文献   

3.
电光高分子材料由于其在光电子信息领域的潜在应用前景已得到了广泛关注和深入研究.本文在简要介绍电光效应及其材料等相关知识的基础上,综述了最近几年来电光高分子材料的研究进展,主要包括生色团的设计与合成,以及掺杂型、侧链型、主链型、交联型、互穿网络型和树枝型等聚合物材料体系的设计与合成.  相似文献   

4.
The use of transition metal-catalyzed coupling reactions in the synthesis of conducting polymers is discussed. These reactions are of growing importance in polymer synthesis and are particularly important in the synthesis of highly functionalized conjugated (conducting) polymers. In this report we discuss applications of this methodology for the synthesis of conducting polymer sensory materials and polymers with reactive functional groups. In the sensory polymers we have incorporated crown ether groups which induce perturbations to the polymer's electronic structure when exposed to an alkali metal ion. Our interest in polymers with reactive functional groups is for the development of polymers which can be transformed into novel all-carbon ladder polymers.  相似文献   

5.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

6.
Poly(thienylene vinylene)s (PTV's) are early examples of conjugated polymers but have not been extensively studied when compared with closely analogous polythiophenes. PTV's synthesized through previously reported techniques are similar in structures that contain various alkyl or alkoxy side-chains that exert limited impact on the polymer electronic properties. Herein, we report the preparation of a series of regio-regular PTV's (rr-PTV's) bearing cross-conjugated side-chains through ADMET polymerization of a common brominated di(thienylene vinylene) (DTV) monomer followed by PPM reactions on the resulting brominated PTV. These new polymers contain a bulky silyloxy alkyl side-chain and a functionalized thiophene moiety on every main-chain thiophene unit, and their regio-regular placement is confirmed by NMR spectroscopy. The thienyl based side-groups broaden polymer absorption ranges and at the same time lead to uncommon emission properties that are results of light-induced charge transfer events between the polymer main-chains and side-chains. Removal of the silyl groups on one of these rr-PTV's led to insoluble materials and x-ray diffraction experiments on the collected solids displayed distinct scattering peaks that are absent from similarly functionalized regio-random PTV's reported previously, thus suggesting better crystallinity originated from regio-regularity.  相似文献   

7.
The synthesis of methacrylates and acrylates containing 4-methoxy-4′-hydroxy-α-methylstilbene and 4-hydroxy-4′-methoxy-α-methylstilbene constitutional isomers attached to the polymerizable group through flexible spacers containing 11, 8, 6, 3, and respectively 2 methylenic units is described. The radical copolymerization of a 1/2 or 2/1 mole ratio of the two constitutional isomeric monomers led to thermotropic side-chain liquid crystalline polymers in all cases. The synthesis of copolysiloxanes based on the same constitutional isomeric mesogens as side groups, and flexible spacers containing 11, 8, 6, 5, and respectively 3 methylenic units is also described. All polymers were characterized by differential scanning calorimetry and optical polarization microscopy. The polymers containing 11 methylenic units in the spacer exhibit Sc mesomorphism, while the other polymers are nematic. Copolymethacrylates do not undergo side-chain crystallization. Only the copolyacrylate containing 11 methylenic units in the spacer exhibits side-chain crystallization. All the copolysiloxanes display side-chain crystallization. The number of melting transitions seen for these polymers decreases with increasing spacer length. Copolysiloxanes containing dissimilar spacer length were also prepared. Only the copolymer synthesized with highly dissimilar spacer lengths, i.e., containing 3 and 11 methylenic units, does not undergo side-chain crystallization. These results have demonstrated that while the type of mesophase is dictated only by the spacer length, the degree of decoupling of the motion of the side-groups from the motion of the main chain is strongly dependent on the nature of the polymer backbone. For the same mesogenic unit and spacer length, the thermal stability of the mesophase is also dictated by the nature of the polymer backbone. The use of constitutional isomers of mesogenic units as side groups in liquid crystalline polymers provides at least qualitative information on the degree of decoupling of the side groups from the polymer main chain.  相似文献   

8.
The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step toward the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities.  相似文献   

9.
A new class of organic-inorganic materials can be prepared, based on inorganic networks and cycloor poly-(organophosphazenes). Poly(organophosphazenes) are polymers characterized by many interesting technological properties. This report is based on a investigation on the reactivity of SiO2, TiO2 and ZrO2 precursors with different phosphazene compounds functionalized with hydroxyl groups, to prepare materials with a hybrid structure. The synthesis of these systems was studied in different experimental conditions. Evidences on the structures and properties of these materials will be presented on the basis of FTIR, SEM and thermal analysis characterization results.  相似文献   

10.
While polysulfones constitute a class of well-established, highly valuable applied materials, knowledge about polymers based on the related sulfoximine group is very limited. We have employed functionalized diaryl sulfoximines and a p-phenylene bisborane as building blocks for unprecedented BN- and BO-doped alternating inorganic–organic hybrid copolymers. While the former were accessed by a facile silicon/boron exchange protocol, the synthesis of polymers with main-chain B–O linkages was achieved by salt elimination.  相似文献   

11.
Organic conjugated polymers and oligomers constitute a three-dimensional network of molecular wires, in which all monomeric units can be functionalized with various prosthetic groups. By varying the nature of these groups, specific interactions with external physical or chemical phenomena can be developed in these materials, leading to molecular devices such as sensors, transducers, memories and logic operators. Chemists have already mastered the realization of many of these functional elements, which mimic those existing in organized beings.The further assembly of these elements in multifunctionalized organic conducting polymers and oligomers will represent the next step towards intelligent materials.  相似文献   

12.
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.  相似文献   

13.
In this article, we review recent progress in the area of photorefractive polymers. Photorefractive (PR) polymers are multifunctional materials which combine photoconductivity and electro‐optic response to show a new phenomenon: light‐induced reversible modulation of the refractive index. Because of their multifunctional features, design, synthesis and preparation of these materials exhibiting high performance is an intellectual challenge. Moreover, numerous applications of photorefractive materials in optical devices have been established using inorganic materials. Utilizing the unique features of organic polymeric materials to prepare useful devices is an engineering challenge. In the past several years, research in this area has gained momentum because numerous new materials which possess better characteristic photorefractive parameters than their inorganic counterparts have been synthesized. Several interesting devices have been presented. Two different approaches have been developed to synthesize and prepare PR polymers, namely composite materials and fully functionalized polymers. Both approaches have had success in identifying new materials and in gaining understanding of the design principles of better materials. This paper discusses these aspects and gives a prospective view about this field.  相似文献   

14.
Modular synthesis of structurally diverse functionalized azobiphenyls and azoterphenyls for the realization of optically switchable materials has been described. The corresponding synthesis of azobiphenyls and azoterphenyls by stepwise Mills/Suzuki-Miyaura cross-coupling reaction, proceeds with high yields and provides facile access to a library of functionalized building blocks. The synthetic methods described herein allow combining several distinct functional groups within a single unit, each intended for a specific task, such as 1) the −N=N− azobenzene core as a photoswitchable moiety, 2) aryls and heteroaryls, functionalized with carboxylic acids or pyridine at its peripheries, as coordinating moieties and 3) varying substitution, size and length of the backbone for adaptability to specific applications. These specifically designed azobiphenyls and azoterphenyls provide modular bricks, potentially useful for the assembly of a variety of polymers, molecular containers and coordination networks, offering a high degree of molecular functionality. Once integrated into materials, the azobenzene system, as a side group on the organic linker backbone, can be exploited for remotely controlling the structural, mechanical or physical properties, thus being applicable for a broad variety of ‘smart’ applications.  相似文献   

15.
The synthesis of phosphane‐ene photopolymer networks, where the networks are composed of crosslinked tertiary alkyl phosphines are reported. Taking advantage of the rich coordination chemistry of alkyl phosphines, stibino‐phosphonium and stibino‐bis(phosphonium) functionalized polymer networks could be generated. Small‐molecule stibino‐phosphonium and stibino‐bis(phosphonium) compounds have been well characterized previously and were used as models for spectroscopic comparison to the macromolecular analogues by NMR and XANES spectroscopy. This work reveals that the physical and electronic properties of the materials can be tuned depending on the type of coordination environment. These materials can be used as ceramic precursors, where the Sb‐functionalized polymers influence the composition of the resulting ceramic.  相似文献   

16.
Polymer topologies exert a significant effect on its properties, and polymer nanostructures with advanced architectures, such as cyclic polymers, star‐shaped polymers, and hyperbranched polymers, are a promising class of materials with advantages over conventional linear counterparts. Cyclic polymers, due to the lack of polymer chain ends, have displayed intriguing physical and chemical properties. Such uniqueness has drawn considerable attention over the past decade. The current review focuses on the recent progress in the design and development of cyclic polymer with an emphasis on its synthesis and bio‐related properties and applications. Two primary synthetic strategies towards cyclic polymers, that is, ring‐expansion polymerization and ring‐closure reaction are summarized. The bioproperties and biomedical applications of cyclic polymers are then highlighted. In the end, the future directions of this rapidly developing research field are discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1447–1458  相似文献   

17.
Acyclic diene metathesis (ADMET) polymerization has been used in the synthesis of telechelic materials using alkoxy‐functionalized carbosiloxane or oligo(oxyethylene)‐based polymers, varying from internal to terminal cured materials or the combination of them. Previous investigations demonstrated that introduction of chain‐end crosslinking improves the stress–strain behavior of such materials. A series of saturated and unsaturated carbosiloxane and oligo(oxyethylene)‐based polymers were synthesized by ADMET polymerization using silacyclobutane as chain‐end, thermally induced crosslinker. The carbosiloxane derivatives presented pure amorphous behavior, whereas the oligo(oxyethylene) polymers were semicrystalline. The thermal curing process was monitored by differential scanning calorimetry via the exotherm between 160 and 210 °C. Mechanical properties on thermoset polymers were measured, where cured polymers showed moduli from 0.6 to 9.3 MPa, tensile strengths from 0.3 to 1.0 MPa, and elongations from 12 to 76%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Murray TJ  Forsyth CJ 《Organic letters》2008,10(16):3429-3431
An efficient and readily modifiable synthesis of GEX1A/herboxidiene/TAN-1609 ( 1) was developed. This modular synthesis featured a Suzuki coupling to install the conjugated diene and a Ru-catalyzed lactonization and Roush crotylation to construct the functionalized tetrahydropyran moiety. Myers' alkylation, cross-metathesis, and Keck crotylation were employed for assembly of the biologically essential side-chain domain.  相似文献   

19.
《化学:亚洲杂志》2017,12(20):2652-2655
Acetylene‐functionalized platform chemicals were synthesized from biomass‐derived 5‐hydrohymethylfurfural (HMF). Demanding mono‐ and bis‐ethynylfurans were obtained in high yields (89–99 %). Applications of these products in the synthesis of smart organic conjugated materials and pharmaceuticals were examined in a series of transformations. Conjugated polyacetylenic polymers with morphology control have been prepared by incorporation of the HMF core.  相似文献   

20.
Supramolecular synthesis represents a flexible approach to the generation of dynamic multicomponent materials with tunable properties. Here, cellular uptake systems based on dynamic supramolecular copolymers have been developed using a combination of differently functionalized discotic molecules. Discotics featuring peripheral amine functionalities that endow the supramolecular polymer with cellular uptake capabilities were readily synthesized. This enabled the uptake of otherwise cell-impermeable discotics via cotransport as a function of supramolecular coassembly. Dynamic multicomponent and multifunctional supramolecular polymers represent a novel and unique platform for modular cellular uptake systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号