首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Cavity flows are a class of flows bounded by material structures, where a recirculation region is present, and they are found in many practical applications. In the present study, the interaction between a boundary layer and an open parallelepipedic cavity develops a Kelvin–Helmholtz-like instability coupled with the cavity recirculation. PIV measurements of the flow are carried out in two orthogonal planes inside the cavity, for different aspect ratios, incompressible flow conditions, and Reynolds numbers in the range 1,900–12,000. Mean velocity and second-order moments of velocity fluctuations reveal the flow morphology. For particular conditions, centrifugal instabilities appear that are induced by flow curvature due to wall confinement. The use of an identification criterion indicates the presence of pairs of counter-rotating vortices winded around the recirculation. A parametric analysis is conducted, and the inviscid Rayleigh discriminant provides the potentially unstable flow regions inside the cavity. Finally, a stability parameter considering the ratio between centrifugal destabilizing effects and stabilizing viscous effects is carried out and gives thresholds for the emergence of the centrifugal instability. The study draws to an end with a comparison with a well-documented lid-driven cavity flow.  相似文献   

2.
Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.  相似文献   

3.
The development of disturbances in viscous compressible flows caused by centrifugal forces is investigated. On the basis of an asymptotic analysis of the Navier-Stokes equations at high Reynolds and Görtler numbers, mathematical models describing the development of three-dimensional unstable vortex structures are constructed. Various linear boundary-value problems are analytically solved. One type of boundary layer instability is that generated by a centrifugal force field. This kind of instability can manifest itself in the flow past concave surfaces or, in general, in flows with streamlines of positive curvature [1, 2]. Instability-driven Görtler vortices have been the subject of much research which was reviewed, for example, in [2–4].  相似文献   

4.
In order to simulate the thick trailing edges of turbine blades a slotted plate profile together with a newly designed nozzle was installed into the high-speed wind tunnel of the DLR Göttingen. At different supersonic Mach numbers and at four coolant flow rates in the range of 0–2.5% pressure distribution measurements and probe measurements were performed. The flow field was visualized by schlieren photos and the instantaneous velocity field was quantitatively investigated by Particle Image Velocimetry (PIV). The measurements of the velocity field gave an insight into stationary effects, for example the change of shock strength with coolant flow rate, and instationary effects such as the existence of a vortex street in the wake. The PIV technique offers special advantages for the investigation of transonic flow fields, but also yields to special experimental difficulties, which are also described in this article. Measured losses display a maximum at the downstream Mach number 1. This is strongly related to the behaviour of the base pressure. A loss minimum is achieved at moderate coolant flow rates, showing that an optimum coolant flow rate exists. The loss was analysed and separated into the loss contributions from the profile upstream of the trailing edge and the mixing loss due to the coolant flow.  相似文献   

5.
Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.  相似文献   

6.
Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three dimensional flows with 2D PIV, there is inherent measurement error due to out-of-plane motion. Errors in the measured velocity field propagate to turbulence statistics. Since this can distort the overall flow characteristics, it is important to understand the effect of this out-of-plane error. In this study, the effect of out-of-plane motion on turbulence statistics is quantified. Using forced isotropic turbulence direct numerical simulation (DNS) flow field data provided by the Johns Hopkins turbulence database (JHTDB), synthetic image tests are performed. Turbulence statistics such as turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlations are calculated. Various test cases were simulated while controlling three main parameters which affect the out-of-plane motion: PIV interrogation window size, camera inter-frame time, and laser sheet thickness. The amount of out-of-plane motion was first quantified, and then the error variation according to these parameters was examined. This information can be useful when examining fully three dimensional flows such as homogeneous and isotropic turbulence via 2D PIV.  相似文献   

7.
Here we present a study on the behavior of individual particles in the Taylor vortex. Two particle-fluid systems were tested: a cube with the edge length of 2 mm and the density of 0.13 g/cm3 (‘light particle’) in a working fluid of mineral oil (density of 0.86 g/cm3 and viscosity of 0.066 Pa.s); and a sphere with the diameter of 1.6 mm and the density of 2.2 g/cm3 (‘heavy particle’) in 90% glycerin/water (density of 1.23 g/cm3 and viscosity of 0.128 Pa.s). The Taylor–Couette device used for this study was featured with a short column (aspect ratio ≤ 6) and a wide gap (radius ratio ≤ 0.67). The interaction between the floating particle and Taylor vortices was investigated using a high speed camera and a particle image velocimetry (PIV) system. Moreover, computational fluid dynamics simulation was performed to calculate the liquid flow pattern and analyze the particle motion. Our results show that the particle behavior in the Taylor–Couette device is strongly dependent on the particle density and Reynolds number. With the increasing Reynolds number, four types of particle trajectories were sequentially identified from the light particle, including a circular trajectory on the surface of the inner cylinder, random shifting between the circular trajectory and oval orbit, a stable oval orbit in the annulus, and a circle along the vortex center. On the other hand, the heavy particle moves along a circular orbit and an oval orbit at low and high Reynolds numbers, respectively. Several unreported particle behaviors were also observed, such as the self-rotation of the particle when it moves along the above trajectories, the shifting axis of the oval orbit, etc. In addition, the PIV measurements show that the trapped particle can only influence the flow pattern locally around the particle. The study can help understand the particle behavior in a Taylor vortex better and therefore benefit applications of particle-laden Taylor vortex devices.  相似文献   

8.
壁面对串列双圆柱尾迹影响的实验研究   总被引:1,自引:0,他引:1  
陈波  李万平 《实验力学》2011,26(4):404-410
为研究壁面对近壁等直径串列双圆柱尾迹特性的影响,用PIV和压力传感器测量尾迹湍流的涡结构及频谱.实验在循环水槽内进行,基于圆柱直径D的雷诺数为1696,壁面边界层厚度为6.6D.影响尾迹流场结构的两个重要的特征参数是T/D和G/D(T为两圆柱中心间的距离,G为圆柱下表面与壁面间的距离),文中主要考察G/D的影响.实验中...  相似文献   

9.
采用二维大涡模拟方法进行了空腔水流场的数值计算, 考察空腔前缘动量损失厚度及来流速度等因素如何影响空腔流的振荡, 同时考察了空腔长深比与空腔流振荡模式的关系. 用空腔水流场的粒子图像测速测量结果验证了数值计算的可信性.结果表明, 空腔水流是否发生振荡取决于壁面摩擦速度.瞬时涡结构和空腔阻力系数2个方面的特征显示空腔水流场有2种典型的振荡模式, 剪切层模式与尾流模式, 确定振荡模式的关键因素是空腔长深比.  相似文献   

10.
High-repetition-rate PIV measurements were performed in the trisonic wind tunnel facility at the Bundeswehr University Munich in order to investigate the boundary layer parameters on a generic rocket model and the recirculation area in the wake of the model at Mach numbers up to Mach = 2.6. The data are required for the validation of unsteady flow simulations. Because of the limited run time of the blow-down wind tunnel, a high-repetition-rate PIV system was applied to obtain the flow statistics with high accuracy. The results demonstrate this method’s potential to resolve small-scale flow phenomena over a wide field of view in a large Mach number range but also show its limitations for the investigations of wall-bounded flows.  相似文献   

11.
The velocity field in a vortex heat cell was investigated experimentally using laser Doppler velocimetry for a wide range of flow conditions. Experimental results point out the three dimensionality of the exchanger's flow, which is composed into a main vortex flow developing along the side walls. The strength of the flow increases up to a limiting value reached for a Reynolds number ranging between 15,000 and 30,000; a secondary flow, caused by interaction between centrifugal and inertial forces, extends perpendicularly to the main flow and remains Reynolds number dependent. It is composed of multiple counter-rotating structures occurring at the exchanger periphery with low inlet Reynolds numbers, thus reducing the rate of centripetal momentum transfer. With increasing inlet Reynolds number, the secondary flow extends across the whole exchanger radius, thus increasing the rate of mixing of the treated fluid. The appearance of so-called Taylor–Görtler vortices tends to reduce the z- and r-axis vorticity transfer.  相似文献   

12.
The interaction of heat release by chemical reaction and the flow dominates flame transition in swirling flows caused by combustion induced vortex breakdown (CIVB). The simultaneous application of 1 kHz high-speed particle imaging velocimetry (PIV) for the analysis of the flow field and OH planar laser-induced fluorescence for the detection of the flame front is particularly useful for the improvement of the understanding of the observed fast CIVB driven flame propagation. For the first time, the combination of both techniques was successfully applied to confined swirling flows. In the study, the flow field characteristics of an aerodynamically stabilized burner system with CIVB are analyzed in great depth. The influence of geometric parameters of the swirl generator was investigated and conclusions concerning the proper burner design of vortex breakdown premix burners are drawn from the experimental results. In particular, the effect of the vortex core with respect to the stability of the swirl stabilized burner is analyzed. The contribution of combustion to vortex breakdown is shown comparing isothermal and reacting flows. The presented data reveals that at the onset of CIVB driven flame transition, the azimuthal vorticity leads to the formation of a closed recirculation bubble at the tip of the internal recirculation zone. Once this bubble propagates upstream, the flame is able to follow and propagate relative to the bulk flow velocity with a velocity far beyond the turbulent flame speed. The interaction of reaction and flow was observed for different volumetric heat releases. The experiments confirm the CIVB theory of the authors, which was initially developed on the basis of a CFD study alone. Both the volume expansion and the baroclinic torque have an effect on whether fast flame propagation occurs. Whereas the volume expansion caused by the heat release stabilizes the flow field and the reaction, the baroclinic torque stimulates flame transition. For upstream propagation the flame tip has to have a position downstream of the stagnation point of the bubble. Else, the required transition inducing force is insufficient and the flame remains stable. In case the flame reaches positions too close or even upstream of the stagnation point, the fast propagation is interrupted or even prohibited. The key finding that the relative position of flame and stagnation bubble governs CIVB is discussed on the basis of high-speed LIF/PIV data as well as chemiluminescence. Since essentially the same behavior has been observed before in tests of a totally different swirler design and flow field, the conclusion can be made that the root cause for CIVB independent of the special geometry has been found.  相似文献   

13.
The flow in the inter-blade channels of a bulb turbine was measured using endoscopic cameras integrated to a stereoscopic particle image velocimetry (S-PIV) system. This paper presents results from the measurement campaign and also provides some key conclusions based on the dataset. The technical aspect of the measurement configuration is addressed. The main focus is on the novelties and challenges brought by the use of endoscopic cameras to achieve S-PIV measurements between the runner blades. For the first time in hydraulic rotating machinery, velocity measurements covered 62 % of a rotor inter-blade flow. After outlining the techniques used, comparison with laser Doppler velocimetry measurements allows assessing the intrusiveness of the endoscopes. Then, some velocity field analyses are shown. First, the rotor–stator interaction is outlined as the influence of the guide vane wakes on the runner flow. The size, localization, strength and dissipation of those structures are inferred from the information coming from measurements. Finally, the PIV data allow the identification of a vortex located near the suction side of the blades and originating from the corner between the leading edge and the hub when operating the bulb turbine at part-load.  相似文献   

14.
15.
The turbulent flow over a circular cavity with an aspect ratio of D/H = 2 is investigated by multi-planar stereoscopic particle image velocimetry and with tomographic particle image velocimetry (PIV). The main aim of the study is the flow topology and the turbulent structure of the asymmetrical flow pattern that forms inside the cavity at these specific conditions. The flow field is measured in the vertical symmetry plane to describe the overall recirculation pattern in the cavity and the turbulent shear layer developing from the separation point. In this specific regime the shear layer fluctuations are recognized as those caused by instabilities together with the effect of the incoming boundary layer turbulence. Additional observations performed at several wall-parallel planes at different height inside the cavity allow to further evaluate the secondary flow circulation generated by this asymmetric regime. The observed flow pattern consists of a steady vortex, occupying the entire cavity volume and placed diagonally inside the cavity such to entrain the external flow from one side, capture it into a circulatory motion and eject it from the opposite side of the cavity. The spatial distribution of the turbulent fluctuations also reveals the same structure. The tomographic PIV measurement returns a visual inspection to the instantaneous three-dimensional structure of the turbulent fluctuations, which at the investigated height exhibit a low level of coherence with slightly elongated vortices in the recirculating flow inside the cavity.  相似文献   

16.
A cylindrical cavity with an aspect ratio of unity is filled with liquid metal and suddenly exposed to an azimuthal body force generated by a rotating magnetic field (RMF). This experimental study is concerned with the secondary meridional flow during the time, if the fluid spins up from rest. Vertical profiles of the axial velocity have been measured by means of the ultrasound Doppler velocimetry. The flow measurements confirm the spin-up concept by Ungarish (J Fluid Mech 347:105–118, 1997) and the continuative study by Nikrityuk et al. (Phys Fluids 17:067101, 2005) who suggested the existence of two stages during the RMF-driven spin-up, in particular the so-called initial adjustment phase followed by an inertial phase which is dominated by inertial oscillations of the secondary flow. Evolving instabilities of the double-vortex structure of the secondary flow have been detected at a Taylor number of 1.24 × 105 verifying the predictions of Grants and Gerbeth (J Fluid Mech 463:229–240, 2002). Perturbations in form of Taylor–Görtler vortices have been observed just above the instability threshold.  相似文献   

17.
非定常空化流场结构的实验研究   总被引:2,自引:0,他引:2  
为深入研究非定常空化流场结构,本文用实验方法研究了绕Clark-Y型水翼的非定常空化流动现象.实验在空化水洞中进行,采用高速摄像技术观测了云状空化阶段的非定常空穴形态,并应用粒子成像测速系统(PIV)对绕水翼空化流场的速度场和涡量场等流动特性进行了同步的实验分析.研究表明:空化现象对流场结构有着重要的影响,在无空化和空...  相似文献   

18.
Evaluation of aero-optical distortion effects in PIV   总被引:1,自引:0,他引:1  
Aero-optical distortion effects on the accuracy of particle image velocimetry (PIV) are investigated. When the illuminated particles are observed through a medium that is optically inhomogeneous due to flow compressibility, the resulting particle image pattern is subjected to deformation and blur. In relation to PIV two forms of error can be identified: position error and velocity error. In this paper a model is presented that describes these errors and particle image blur in relation to the refractive index field of the flow. In the case of 2D flows the model equations can be simplified and, furthermore, the background oriented schlieren technique (BOS) can be applied as a means to assess and correct for the optical error in PIV. The model describing the optical distortion is validated by both computer simulation and real experiments of 2D flows. Two flow features are considered: one with optical distortion normal to the velocity (shear layer) and one with optical distortion in the direction of the flow (expansion fan). Both simulation and experiments demonstrate that the major source for the velocity error is the second derivative of the refractive index in the direction of the velocity vector. The aero-optical distortion effect is less critical for shearing interfaces in comparison with compression/expansion fronts, the most critical case being represented by shock waves. Based on the results from the simulated experiments, it is concluded that for the 2D flow case the BOS method allows a measurement of the mean velocity error in PIV and can reduce it to a large extent.  相似文献   

19.
齐鄂荣  黄明海  李炜  张昕 《实验力学》2006,21(2):225-232
利用PIV技术,通过系统对150相似文献   

20.
Real-time image processing for particle tracking velocimetry   总被引:2,自引:1,他引:1  
We present a novel high-speed particle tracking velocimetry (PTV) experimental system. Its novelty is due to the FPGA-based, real-time image processing “on camera”. Instead of an image, the camera transfers to the computer using a network card, only the relevant information of the identified flow tracers. Therefore, the system is ideal for the remote particle tracking systems in research and industrial applications, while the camera can be controlled and data can be transferred over any high-bandwidth network. We present the hardware and the open source software aspects of the PTV experiments. The tracking results of the new experimental system has been compared to the flow visualization and particle image velocimetry measurements. The canonical flow in the central cross section of a a cubic cavity (1:1:1 aspect ratio) in our lid-driven cavity apparatus is used for validation purposes. The downstream secondary eddy (DSE) is the sensitive portion of this flow and its size was measured with increasing Reynolds number (via increasing belt velocity). The size of DSE estimated from the flow visualization, PIV and compressed PTV is shown to agree within the experimental uncertainty of the methods applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号