首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Flammable chemicals are frequently encountered in industrial processes. Under the safe operation basis and for fire/explosion danger prevention, it is imperative to recognize the flammability characteristics of these processes, especially under the working scenarios for elevated pressure and temperature. This study was conducted to investigate fire and explosion properties, including the explosion limits (LEL and UEL), maximum explosion overpressure (P max), maximum rate of explosion pressure rise (dP/dt)max, gas or vapor deflagration index (K g) and explosion class (St) of various acetone/water solutions (100, 75, 50 and 25 vol.%) at higher initial pressure/temperature up to 2 atm and 200°C via a 20-L-Apparatus. We further discussed the safety-related parameters and fire/explosion damage degree variations in the above aqueous acetone within 1 atm and 150°C. The results offered a successful solution for evaluating the flammability hazard effect in such a relevant crucial process with elevated pressure and temperature.  相似文献   

2.
In industrial processes, information on the safety property of chemicals is essentially crucial for safe handling during unit operations. Ensuring the safe use of combustible or flammable substances in processes is unlikely without detailed investigations of their flammability characteristics and related hazards. We studied 3-methyl pyridine (3-picoline), e.g., flammability limits (LFL/UFL), maximum explosion pressure (P max), maximum explosion pressure rise (dP/dt)max, minimum oxygen concentration (MOC), vapor deflagration index (K g), and characterized the influence of inert steam (H2O) on critical parameters for 3-picoline/water mixtures at 270°C, 1 atm, various oxygen concentrations, and vapor mixing ratios (100/0, 30/70, 10/90 and 5/95 vol.%) with a 20-L-Apparatus in simulated conditions, respectively. The results showed that the flammability characteristics of 3-picoline(aq) all increased with the oxygen concentration. However, as the composition of inert steam increased, the flammability parameters and the degree of fire and explosion hazards were significantly reduced, instead. This study elucidated the flammability properties of 3-picoline mixed with inert steam. The conclusions could be applied to proactively prevent the relevant processes from incurring fire and explosion accidents.  相似文献   

3.
Preventing accidental explosions of flammable liquid/gas mixtures is very important. As far as flammability characteristics are concerned, we simulated the effects of inert liquid/gas, which was filled with reactors, vessels, or closed space, employed in the chemical process industries. The inert liquid/gas (H2O) weakened the oxygen concentration and reduced solvent vapor concentration in a 20-L-Apparatus. This study investigated the flammability characteristics of acetone/water solutions (100/0, 75/25, 50/50, and 25/75 vol.%) that are controlled at a temperature of 150°C and pressures of 101/202 kPa, respectively. The flammability parameters included flammability limits (LEL and UEL), maximum explosion pressure (P max), maximum explosion pressure rise ((dP dt −1)max), and vapor deflagration index (K g). The results of a series of experimental tests showed that UEL, P max, and K g all decreased with steam rising under the experimental conditions. The results can be applied to process safety design/operation for identifying whether the inert liquid/gas (H2O) content has any substantial effects in reducing the fire and explosion hazard of the solution of interest.  相似文献   

4.
The flammability characteristics of chemical substances are very important for safety considerations in manufacturing processes. This study investigated the mixing of toluene and methanol mixtures with five vapor mixing ratios (100/0, 75/25, 50/50, 25/75 and 0/100 vol.%) at initial conditions of 1 atm and 150°C, and determined the flammability properties to identify their potential fire and explosion hazards. These safety-related parameters included lower explosion limit (LEL), upper explosion limit (UEL), maximum explosion overpressure (P max) and rate of maximum explosion pressure rise ((dP/dt)max); all of them were measured by a 20-L-Apparatus. In terms of flammability tests for this research, the experimental results indicated that when methanol was increased, which could induce a higher range of flammability, afterwards the situation could be triggered to a dangerous level, such as fire or explosion. Based on the above-mentioned, we could obtain a series of flammability properties and provide inherently safer design in related industrial processes for preventing serious fire and explosion accidents.  相似文献   

5.
The minimum oxygen concentration (MOC) is an important safety parameter of safety for fire/explosion prevention of practical processes with fuel-air-inert mixtures. In this study, the critical fire and explosion properties stand for the explosion sensitivity (lower explosion limit (LEL), upper explosion limit (UEL)), explosion maximum indices (maximum explosion pressure (P max), maximum rate of explosion pressure rise (dP dt −1)max) and explosion damage degree (gas or vapor deflagration index (K g)/St Class). These imperative parameters of various toluene/methanol mixing solvents (100/0, 75/25, 50/50, 25/75 and 0/100 vol.%) were experimentally determined within a closed spherical vessel of 20 L (20-L-Apparatus) at 101 kPa and 150 °C. Particularly, we discussed the variations both on the above characteristics and implied flammability hazard degree within different initial oxygen circumstances; the specific effects on toluene/methanol mixing solvents were to be clarified accompanied with reducing loading oxygen concentrations, gradually approaching up to the MOC in this present work. Finally, a triangle flammability diagram with the five toluene/methanol components in our testing arrangements and conditions was established for graphically indicating the dangerous fire/explosion hazard region. It has been confirmed that this study would be very useful in relevant industrial processes for a proactive loss prevention program. The experimentally derived outcomes are recommended for the inherently safer design (ISD) for forestalling any accidents from fires and explosions.  相似文献   

6.
This research investigated the influence of binary solutions of benzene and methanol for their vapor flammability characteristics. The different mixing ratios (100/0, 75/25, 50/50, 25/75 and 0/100 vol%) samples were injected into a 20-liter spherical explosion vessel under various initial temperatures (100, 150 and 200°C) to study their flammability behaviors. According to the experimental results, the flammability diagram of mixtures can be completely illustrated and combined with specific safety-related properties such as lower explosion limit (LEL), upper explosion limit (UEL), minimum oxygen concentration (MOC), maximum explosion overpressure (Pmax), and gas or vapor deflagration index (Kg). The experimental results showed that the UEL, Pmax and Kg all increased with the temperature, pressure and oxygen concentration, whereas there was no significant variation on the part of LEL. The results can provide specific information on fire and explosion hazards for related industries.  相似文献   

7.
Knowledge of material safety properties is critical for safe handing in the chemical process industries, especially for flammable chemicals that might result in serious fires and explosions. This study investigated the flammability characteristics of methanol under working conditions during the process. The targeted fire and explosion properties, like explosion limits (UEL and LEL), vapor deflagration index (K g), maximum explosion pressure (P max), and maximum explosion pressure rise [(dP dt −1)max], were deliberately obtained via a 20-L-Apparatus in 101 kPa (i.e., 760 mmHg/1 atm), 150 and 200 °C, along with various experimental arrangements containing nitrogen (N2) or carbon dioxide (CO2) as inert component. Particularly, this study discussed and elucidated the inert influence on the above safety-related parameters by two different inerting gases of N2 and CO2. The results indicated that adding an inert component to fuel–inert gas mixtures determined the decrease of explosion range and flammability hazard degree. The results also demonstrated that CO2 possessed higher inerting capability than N2 in this study.  相似文献   

8.
Diphenylcarbonate (DPC) has been regarded as a potential substitute material for highly toxic phosgene, reacting with bisphenol A (BPA) in a phosgene-free process to produce polycarbonate (PC). For synthesizing DPC, methylphenylcarbonate (MPC) was the critical intermediate with potential flammability in a transesterification reaction from dimethylcarbonate (DMC) and phenol. Under the National Fire Protection Association (NFPA) criterion, MPC is viewed as one sort of combustible liquid (Class IIIB). Once it fires or burns during storage, operation or transportation, it can cause a serious fire and explosion. However, researches are still scanty in mentioning the basic but crucial fire and explosion features of MPC to date. A sound background of material safety properties is essential for safe handling; in particular, flammability information is extremely crucial for a specific chemical during a unit operation to prevent any fire and explosion hazards. In this study, we investigated the explosion limits (LEL, UEL), maximum explosion pressure (P max), maximum rate of explosion pressure rise ((dP/dt)max), and gas or vapor explosion constant (K g) of MPC, according to its practical operating conditions (1 atm, 250°C, 21 vol.% O2) and by means of a 20 L vessel (20-L-Apparatus). By surveying and defining the experimental data through flammability tests, these basic but crucial safety-related parameters on flammability characteristics of MPC were proposed, so as to advance understanding and to avoid fire and explosion accidents for such relevant processes.  相似文献   

9.
Cumene hydroperoxide (CHP) being catalyzed by acid is one of the crucial processes for producing phenol and acetone globally. However, it is thermally unstable to the runaway reaction readily. In this study, various concentrations of phenol and acetone were added into CHP for determination of thermal hazards. Differential scanning calorimetry (DSC) tests were used to obtain the parameters of exothermic behaviors under dynamic screening. The parameters included exothermic onset temperature (T 0), heat of decomposition (ΔH d), and exothermic peak temperature (T p). Vent sizing package 2 (VSP2) was employed to receive the maximum pressure (P max), the maximum temperature (T max), the self-heating rate (dT/dt), maximum pressure rise rate ((dP/dt)max), and adiabatic time to maximum rate ((TMR)ad) under the worst case. Finally, a procedure for predicting thermal hazard data was developed. The results revealed that phenol and acetone sharply caused a exothermic reaction of CHP. As a result, phenol and acetone are important indicators that may cause a thermal hazard in the manufacturing process.  相似文献   

10.

Abstract  

An extensive series of pyrazabole chromophores containing pseudo-conjugated systems have been theoretically constructed and investigated on the one-photon absorption (OPA) and two-photon absorption (TPA) properties by using density functional theory and Zerner’s intermediate neglect of differential overlap methods. The results indicated that all the pyrazabole chromophores show strong OPA at around 400 nm and intense TPA properties in the range of 500–600 nm with TPA cross sections (δ max) as large as 540–3,560 GM, which are excellent candidates for optical power limiting materials. It is noteworthy that the δ max values of the two constructed pyrazaboles, PA3 and PAF2, are 308.8 GM at 772.0 nm and 157.8 GM at 834.4 nm, respectively, which may be particularly attractive as probes for two-photon fluorescence imaging. The influence of incorporating electron acceptors in the central core, π-conjugated bridge and terminal groups on OPA and TPA properties was analyzed in detail to derive structure–property relationships and to lay the guidelines for both spectral tuning and amplification of molecular TPA in the target region. Meanwhile, the solvent effects on these properties were taken into account within the PCM model. The solvent has a significant impact on the TPA properties for chromophore PA3 and leads to the two-photon absorption spectra (λ max T ) red-shift and δ max enhancing relative to those in gas phase. In addition, from the calculations of molecule AlA2, we can draw the conclusion that the compounds with the Al2N4 center behave similarly to pyrazabole chromophores in the linear optical and TPA properties and increase TPA cross sections to some extent.  相似文献   

11.
In recent years, organic peroxides, including methyl ethyl ketone peroxide (MEKPO) and cumene hydroperoxide (CHP), have often caused thermal runaway reactions, fires, and thermal explosions worldwide. Under normal circumstances, H2O and dry fire-extinguishing chemicals are often employed to eliminate fire situations. We evaluated the thermal runaway reaction for MEKPO and CHP mixed with H2O and dry fire-extinguishing chemicals by differential scanning calorimetry, and thermal runaway reaction for CHP mixed with dry fire-extinguishing chemicals by vent sizing package 2. The results showed that ABC dry chemical, BC dry chemical, and XBC dry chemical all caused the decomposition of MEKPO to occur at lower onset temperature and H2O caused the ΔH d of MEKPO to become higher. On the other hand, H2O and XBC dry chemical induced the decomposition of CHP to occur at lower onset temperature as well as lower thermal explosion temperature. The maximum of self-heating rate ((dT/dt)max) and the maximum pressure-rise rate ((dP/dt)max) of CHP mixed with dry fire-extinguishing chemicals were measured lower than CHP alone. The results indicated that MEKPO and CHP are highly hazardous when mixed with H2O and some dry fire-extinguishing chemicals. In view of loss prevention, the results can be useful references for fire fighters dealing with thermal upsets in chemical plants.  相似文献   

12.
Reaction pathways for steam reforming of 2-propanol (isopropyl alcohol, IPA) on Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 have been studied by temperature-programmed reactions (TPRs) of IPA and acetone in the presence of steam. The results of TPRs suggest that that of IPA on Rh/Al2O3 and Ru/Al2O3 proceeds via acetone, while the steam reforming of IPA on Pd/Al2O3 takes place via propene from acetone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The Coulomb explosion process of N2O in an intense laser-field (∼5 PW/cm2) has been investigated by the high-resolution time-of-flight (TOF) spectroscopy. Six two-body explosion pathways involving the NO+, NO2+, N2 + molecular ions have been securely identified from the momentum-scaled TOF spectra of the fragment ions. Assuming a linear geometry, three-body explosion pathways were investigated by sequential and concerted explosion models. When the concerted model is adopted, the observed momentum distributions of six atomic ion channels; N+, N2+, N3+, O+, O2+ and O3+, were well fitted using the Gaussian momentum distribution with the optimized bond elongation factor of 2.2(3). From the yields of individual Coulomb explosion pathways determined by the fit, the abundance of the parent ions, N2Oz+ (z=2–8), prior to the two- body and three-body explosion processes was found to have a smooth distribution with a maximum at z∼3.  相似文献   

14.
Ultradrawing of films of high-molecular-weight polyethylene (M?w = 1.5 × 106) produced by gelation crystallization from solution is discussed. The influence of the initial polymer volume fraction (?) on the maximum draw ratio (λmax) of the dried films is examined in the temperature region from 90–130°C. The results can be described very well by the relation λmax = λ ??1/2 where λ is the (temperature-dependent) maximum draw ratio of the melt-crystallized film. An attempt is made to discuss the marked influence of the initial polymer volume fraction on λmax in terms of the deformation of a network with entanglements acting as semipermanent crosslinks.  相似文献   

15.
The reaction of (tmeda)Pd(ClO4)2 (tmeda = N,N,N′,N′-tetramethylethylenediamine) with L (L = bis(4-(4-pyridylcarboxyl)phenyl)methane) affords the ionic cyclodimeric palladium(II) complex [(tmeda)Pd(L)]2(ClO4)4. The complex forms an unprecedented micro-sprout morphology via slow evaporation of acetone in a dilute concentration mixture of acetone and water without any template or additive. In contrast, the palladium(II) complex in a concentrated mixture forms uniform submicrospheres. The formation-process of the micro-sprout morphology has been explained in terms of a stepwise concentration effect. Furthermore, surface modifications and properties of the micro-sprouts via a typical anion exchange or sonication have been studied.  相似文献   

16.
A new fluorescent sensor (1) for Pb2+ containing a 1,4-dicyano-2,5-bis(styryl)benzene fluorophore and 2-(N,N′-bis(carboxylmethyl))amino-1-carboxylmethoxylbenzene as receptor has been synthesized. The sensor selectively responds to Pb2+ in the aqueous environment, and brings about similar and significant changes in one- and two-photon excited emission spectra: λ max red-shift from 460 (519) to 590 nm. The selective response is pH-independent in a large physiological pH range, and two-photon action cross section (ϕδ) is 51 GM (1 GM = 1×10−50 cm4·s·photon−1·molecule−1) at 740 nm. Supported by the National Natural Science Foundation of China (Grant Nos. 20705621 & 20706008), the National Basic Research Project of China (Grant No. 2009CB724706), the Ministry of Education of China, Changjiang Scholars Innovative Research Team in University (Grant No. IRT0711) and Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No. 707016)  相似文献   

17.
Density functional theory (DFT) methods have been applied to study the properties of series of N5 + salts. The thermal stabilities of the crystals are evaluated based on the reaction enthalpy (ΔH) and free energy change (∆G) of the salts when they dissociate into neutral products. The energy outputs of salts in explosion indicate that all N5 + salts yield large energy except for N5SbF6 and N5Sb2F11. Considering the released energy and thermal stability, (N5)2SnF6, N5PF6, N5BF4, and N5SO3F may be potential candidates of very energetic explosives.  相似文献   

18.
A new thermothickening aqueous system was presented based on mixtures of hydrophobically-modified acrylamide copolymer (HMPAM), poly(N-isopropylacryl-amide) (PNIPAM) and sodium dodecyl benzene sulfonate (SDBS). Unique in the thermothickening system, a maximum viscosity and the temperature (T max) when reaching such viscocity change independently, reflects the presence of intermolecular interactions. The T max of the new system suggests that its thermothickening behavior is correlated to the cloud point temperature (T c) of PNIPAM, which can be easily adjusted to desired values by the addition of SDBS. The experimental data also indicate that the temperature between the rheological transition temperature (T t) and T max in HMPAM+PNIPAM+SDBS is within the range of 35–65°C, and the thermothickening behavior originates from the reinforcement of the association network between HMPAM, PNIPAM and SDBS. Consequently, the viscosity over the corresponding thermosensitive range upon cooling is higher than that upon heating.  相似文献   

19.
The enantiomerically pure title complex, [SP‐4‐4]‐(R)‐[2‐(1‐aminoethyl)phenyl‐κ2C1,N]chlorido(quinoline‐κN)palladium(II) acetone hemisolvate, [Pd(C8H10N)Cl(C9H7N)]·0.5C3H6O, crystallizes with four molecules of the organopalladium complex and two molecules of acetone in the asymmetric unit. This corresponds to a discrete hydrogen‐bonded aggregate and to the content of the unit cell in the space group P1. Pronounced pseudo‐inversion symmetry relates pairs of these objects in the asymmetric unit.  相似文献   

20.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)max/(WGA +t), (SOR)=t (SOR)max/(WSor+t), vGA=[WGA (GA)max]/(WGA+t)2 and VSOR=[WSOR (SOR)max]/(WSOR+t)2. Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)max= 541 g/L, (SOR)max=552 g/L, WGA=4.8h, WSOR=4.9h, υGA=112.7 g/L· and υSOR=112.7 g/L·.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号