首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Heteropoly acids Cs x H3 − x PW12O40 · nH2O with different cesium content are synthesized as nanostructured compositions. Their actual composition and specific surface are determined, microstructure studied and proton conductivity measured. Composite electrocatalytic systems based on platinized cesium salt of phosphorus-tungsten heteropolyacid Cs2.3H0.7PW12O40 · nH2O are prepared with admixture of Vulcan XC-72 carbon black. Mixed electronic-ionic conduction of the composite systems with different carbon black content is studied. Platinum-based nanostructured electrocatalyst based on the Cs2.3H0.7PW12O40 · nH2O-materials as support is synthesized and studied. The possible effective using of the studied nanocomposite as electrode for low-temperature hydrogen-air fuel cells is demonstrated. Electrochemical studies of catalytic properties of the Pt-Cs2.3H0.7PW12O40 · nH2O-C-electrodes in hydrogen and air are carried out by example of the prepared materials with different carbon black content.  相似文献   

2.
Simple and improved conditions have been found for the synthesis of 3-pyrrolyl-indolinones and pyrrolyl-indeno[1,2-b]quinoxalines by coupling of 4-hydroxyproline with isatins and 11H-indeno[1,2-b]quinoxalin-11-ones using Keggin (H3PW12O40) and Well-Dawson tungsten heteropolyacids (H6P2W18O62).  相似文献   

3.
《Vibrational Spectroscopy》2007,43(2):435-439
The sorption of gaseous ammonia into solid polyoxometalates such as the Keggin (H4SiMo12O40, H4SiW12O40 and H3PW12O40) and Dawson type (H6P2W18O62) heteropolyacids was studied. The combination of microbalance measurements and FT-IR spectroscopy confirmed the formation of diammonium ion N2H7+ in the bulk of heteropolyacids of both types, which was found to depend on both the ammonia equilibrium pressure and sorption temperature. The diffusion coefficients of the ammonia molecules penetrating into the bulk of heteropolyacids were calculated.  相似文献   

4.
The proton mobility in 12-phosphotungstic heteropolyacid (PWA) and its salts (Cs2HPW12O40·xH2O, Cs3PW12O40·xH2O, (NH4)3PW12O40·xH2O) was investigated by impedance spectroscopy and nuclear magnetic resonance with pulsed field gradient under wide range of relative humidity. Values of two diffusion components observed in PWA as well as in its acid cesium salt differ in one order of magnitude. Also there are two components in the impedance spectra of these compounds. Thus, we suggest, the proton transport take place both inside the grains and along its boundaries. Self-diffusion coefficients, observed in the neutral cesium and ammonium salts, are close to each other and equal to the fast diffusion coefficient in acid cesium salt. At the same time, there is the only relaxation component in the impedance spectra of neutral salts. Thus, it can be concluded, that in case of neutral salts of PWA, there is no proton transport inside the grains of these compounds, and their high proton conductivity caused by fast proton transport along the grain boundaries.  相似文献   

5.
In this study, we synthesized hybrid materials using well-Dawson polyoxometalates (POMs), K7[H4PW18O62]·18H2O or K6[P2W18O62]·13H2O and a room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). K, W, P and CHN elemental analysis showed that one mole of [H4PW18O62]7− reacts with 6 moles of BMIM+ and one mole of [P2W18O62]6− reacts with 4 moles of BMIM+ to form, respectively, K[BMIM]6H4PW18O62 and K2[BMIM]4P2W18O62. X-ray diffraction illustrated amorphous structure of the hybrid materials. FT-IR spectra showed the presence of both 1-butyl-3-methylimidazolium cation and the Dawson anion. TG analysis displayed a relative thermal stability of the hybrid materials compared to the parents Dawson POMs. Cyclic voltammetry showed that the reduction peak potentials of the Dawson anion in the hybrid materials shift towards negative values and the shift is more pronounced for K[BMIM]6H4PW18O62 compared to K2[BMIM]4P2W18O62. This was attributed to a decrease in the acidity of the Dawson POM anion in the hybrid material.  相似文献   

6.
This paper attempts to review recent works on catalysis of porous heteropoly compounds. The salts of heteropolyacids having Keggin structure with large cations like Cs+ are porous materials. For Cs hydrogen salts, the pore width can be controlled by the Cs content. Cs2.5H0.5PW12O40 has the largest amount of protons on the surface among the acidic Cs salts and possesses pores with bimodal distribution in the micro and meso region. Efficient performances were demonstrated for acid-catalyzed reactions such as skeletal isomerization of -butane in solid-gas system, alkylation and acylation in solid-liquid system, and hydrolysis and hydration in solid-water system. A microporous salt, Cs2.2H0.8PW12O40, exhibited reactant shape selectivity towards direct decomposition of esters. Furthermore, an ultramicroporous bifunctional catalyst, Pt–Cs2.1H0.9PW12O40 of which the pore width is around 5 Å, exhibits reactant shape selectivity for hydrogenation of alkenes and oxidation of hydrocarbons, and product shape selectivity for skeletal isomerization of -butane.  相似文献   

7.
以含有共轭大π键的2,5-双(乙炔基二茂铁)噻吩(BFET)和二甲基双十八烷基铵(DMDOA)与Keggin结构和Dawson结构钨磷杂多酸做成膜材料, 用LB技术组装了两种新型无机-有机杂化LB膜. 用π-A曲线、UV-vis吸收光谱、原子力显微镜(AFM)、扫描隧道显微镜(STM)、荧光光谱和表面光电压谱(SPS)对标题LB膜的成膜性能、结构及光电性质进行了研究, 发现标题杂化LB膜的粒子具有纳米尺寸, 在可见光区有较强的光电压响应, 在电压为±2.0 V时, 隧道电流值达到±100 nA.  相似文献   

8.
The acid properties of heteropoly acids of the following three structure types were studied by conductometry in acetic acid: Keggin (H3PW12O40, H3PMo12O40, H4SiW12O40, H3PW11ThO39; and H5PW11XO40, where X(IV) = Ti or Zr), Dawson (-H6P2W18O62and -H6P2Mo18O62), and H6P2W21O71(H2O)3. These compounds are electrolytes that dissociate in only the first step of this solvent. The thermodynamic dissociation constants of the heteropoly acids were calculated by the Fuoss–Kraus method. The Hammett acidity functions H 0of the solutions of H5PW11XO40, H3PW12O40, H4SiW12O40, and H6P2W21O71(H2O)3in 85% acetic acid at 25°C were determined by the indicator method. All of the test heteropoly acids were found to be strong acids.  相似文献   

9.
Gold nanoparticles loaded onto Keggin‐type insoluble polyoxometalates (CsxH3?xPW12O40) showed superior catalytic performances for the direct conversion of cellobiose into gluconic acid in water in the presence of O2. The selectivity of Au/CsxH3?xPW12O40 for gluconic acid was significantly higher than those of Au catalysts loaded onto typical metal oxides (e.g., SiO2, Al2O3, and TiO2), carbon nanotubes, and zeolites (H‐ZSM‐5 and HY). The acidity of polyoxometalates and the mean‐size of the Au nanoparticles were the key factors in the catalytic conversion of cellobiose into gluconic acid. The stronger acidity of polyoxometalates not only favored the conversion of cellobiose but also resulted in higher selectivity of gluconic acid by facilitating desorption and inhibiting its further degradation. On the other hand, the smaller Au nanoparticles accelerated the oxidation of glucose (an intermediate) into gluconic acid, thereby leading to increases both in the conversion of cellobiose and in the selectivity of gluconic acid. The Au/CsxH3?xPW12O40 system also catalyzed the conversion of cellulose into gluconic acid with good efficiency, but it could not be used repeatedly owing to the leaching of a H+‐rich hydrophilic moiety over long‐term hydrothermal reactions. We have demonstrated that the combination of H3PW12O40 and Au/Cs3.0PW12O40 afforded excellent yields of gluconic acid (about 85 %, 418 K, 11 h), and the deactivation of the recovered H3PW12O40–Au/Cs3.0PW12O40 catalyst was not serious during repeated use.  相似文献   

10.
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12−xVxO40](3+x)− (x = 1−4) across the water | nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O4−40, HPW10V2O4−40, H2PW10V2O3−40, H3PW9V3O3−40 and H4PW8V4O3−40 across the water | nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled. The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.  相似文献   

11.
The formation of Pd(II)-containing and mixed Pd(II),Cu(II), Pd(II),Fe(III), and Pd(II),V(V) complexes with heteropolyanion PW9O9– 34was studied using 31P, 183W, 51V NMR, visible UV and IR spectroscopy, and the differentiating dissolution methods. In an aqueous solution and at optimal pH (3.7), the monometallic complexes [Pd3(PW9O34)2]12–and [Pd3(PW9O34)2Pd n O x H y ] q(n av= 3), the bimetallic complexes [Pd2Cu(PW9O34)2]12–, [Pd2Fe(PW9O34)2]11–, and [PdFe2(PW9O34)2]10–, and a mixture of the [Pd3(PW9O34)2Pd n O x H y ] q(n av 10) + [(VO)3(PW9O34)2]9–complexes are formed. The title complexes were isolated from solution as Cs+solid salts belonging to the same [M3(PW9O34)2] structural type.  相似文献   

12.
Recent progress on the catalytic decomposition of lignin model compounds to aromatics was reported in this review. Cesium-exchanged heteropolyacid catalysts (CsxH3.0?xPW12O40), palladium catalysts supported on cesium-exchanged heteropolyacid (Pd/CsxH3.0?xPW12O40), and palladium catalysts supported on various activated carbon aerogels (ACAs) (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/Cs2.5H0.5PW12O40/ACA-SO3H) were prepared, and they were employed for the decomposition of C–O bond in lignin to aromatics. Phenethyl phenyl ether, benzyl phenyl ether, and 4-phenoxyphenol were used as dimeric lignin model compounds representing for β-O-4, α-O-4, and 4-O-5 bonds in lignin, respectively. It was observed that CsxH3.0?xPW12O40 and Pd/CsxH3.0?xPW12O40 were highly active for the decomposition of phenethyl phenyl ether and benzyl phenyl ether to aromatics. However, these catalysts showed very low catalytic performance in the decomposition of 4-phenoxyphenol. Palladium catalysts supported on various ACAs (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/XCs2.5H0.5PW12O40/ACA-SO3H) were efficient for the decomposition of 4-phenoxyphenol to aromatics. Acidity of the catalysts played a key role in determining the catalytic performance in the decomposition of 4-phenoxyphenol to aromatics.  相似文献   

13.
Oxidation of cycloolefins (cyclohexene, cyclooctene, and cyclododecene) with a 30% solution of hydrogen peroxide at 65 °C in the presence of heteropoly acids (HPA) H3PW12–x Mo x O40 (x = 0—12), which are precursors of active peroxo complexes, and phase transfer catalysts Q+Cl, where Q+ is the quaternary ammonium cation containing C4—C18 alkyl groups or [C5H5NC16H33]+, was studied. The catalytic activity decreases in the HPA series: H3PW12O40 > H3PW9Mo3O40 > H3PW6Mo6O40 > H3PW3Mo9O40 > H3PMo12O40. The state of the H3PW12O40—I2I2 system was studied using UV, IR, and 31P NMR spectroscopies with variation of the [H2O2] : [HPA] ratio from 2 to 200 during cyclohexene epoxidation. Despite different catalytic precursors, the reaction proceeds through the same peroxo complex.  相似文献   

14.
The esterification reaction of n-butanol with acetic acid ([BuOH] : [HOAc] = 1 : 15 mol/mol; 55°C, 5% H2O) was studied in the presence of tungsten heteropoly acids of the Keggin (H3PW12O40, H4SiW12O40, H5PW11TiO40, H5PW11ZrO40, and H3PW11ThO39) and Dawson structure (-H6P2W18O62, H6P2W21O71(H2O)3, H6As2W21O69(H2O), and H21B3W39O132). The reaction orders with respect to H6P2W21O71(H2O)3, H3PW12O40, and H6P2W18O69are equal to 0.78, 1.00, and 0.97, respectively. It was found that the reaction rate depends on the acidity, as well as on the structure and composition of heteropoly acids. The H21B3W39O132heteropoly acid is most active, whereas the Keggin-structure heteropoly acids exhibit the lowest activities. Of the Keggin structure heteropoly acids, H5PW11ZrO40exhibits the highest activity because of the presence of a Lewis acid site in its structure.  相似文献   

15.
Hetero polyanions, namely, P2W17O61 10–, P2W18O62 6– and SiW11O39 8– were extracted by TBP/dodecane from HNO3 or HCl solution, as H10P2W17O61 in the case of P2W17O61 10–. The distribution ratio of P2W17O61 10– depended on both H+ concentration and ionic strength of aqueous solution, and free-TBP concentration in organic solution. Experimental equation was established for predicting the distribution ratio of P2W17O61 10– in nitrate system.  相似文献   

16.
Through a combination of Raman spectroscopy, multi-element NMR spectroscopy and chemical analysis, the differences between the action of carbonate and carbamate as agents for dissolving Cs3PMo12O40xH2O(s) (CPM) and ZrMO2O7(OH)2(H2O)2(s) (ZM) have been elucidated. Alkaline H2NCO2/HCO3/CO32− solutions, derived from the dissolution of ammonium carbamate (NH4H2NCO2; AC), dissolve CPM by base hydrolysis of the PMo12O403− Keggin anion, ultimately forming [MoO4]2− and PO43− when excess base is present. If the initial concentration of H2NCO2/HCO3/ CO32− is lowered, base hydrolysis is incomplete and the dissolved species include [Mo7O24]6− and [P2Mo5O23]6−, and undissolved solid Cs3PMo12O40, CsxNH7−xPMo11O39, and CsxNH6−xMo7O24 remain. Na2CO3 solutions dissolve Cs3PMo12O40 through a similar mechanism, but the dissolution rate is much lower. We attribute this difference to the different buffering effects of H2NCO2/HCO3/CO32− and CO32−/HCO3 solutions, and the instability of carbamic acid, the protonated form of H2NCO2 (which rapidly decomposes into NH3 and CO2). The ability of NH3 to produce NH4+ and OH, together with the evolution of CO2 gas, drive the reaction forward. Low temperature measurements under conditions where pure H2NCO2 is kinetically stable, allowed the rates of dissolution of CPM by H2NCO2 and CO32− to be compared directly, confirming the faster dissolution by H2NCO2. Compared to CPM, the dissolution of ZM by H2NCO2/HCO3/CO32− is a much slower process and is driven by the formation of soluble ZrIV-carbonate complexes and MoO42−. The driving force for the dissolution of ZM is the superior complexing ability of carbonate over carbamate; consequently solutions containing a higher carbonate concentration dissolve ZM faster.  相似文献   

17.
The liquid-phase C-alkylation of hidroquinone with isobutene catalyzed by heteropoly acids H3PW12O40, H6P2W18O62 and H6P2W21O71 (HPA) under phase-transfer conditions in a two-phase system, including toluene (upper phase) and HPA dioxane etherate, HPA·xC4H8O12·yH2O, (lower phase) has been studied.  相似文献   

18.
Reverse osmosis was used for the separation of various types of heteropolyanions (HPA): [PW11O39M(H2O)] k (M = CoII, FeIII, CrIII), [(PW11O39Fe)2O]10– , and [PW11O39 · Fe n O x H y ] p from contaminant ions NO3 and Na+ that are usually introduced into the solution in the synthesis of HPA.Translated fromIzvestiya Akodemii Nauk. Seriya Khimicheskaya, No. 4, pp. 1009–1011, April, 1996.  相似文献   

19.
Synthesis and stability under electron irradiation of a hollandite structure-type Ba1.16Al2.32Ti5.68O16 ceramic envisaged for radioactive cesium immobilization. Hollandite structure-type BaxCsy(M,Ti)8O16 (x + y < 2, M trivalent cation) ceramics are currently envisaged as a specific waste form for radioactive cesium immobilization. In order to simulate the effect of cesium β decay on this kind of matrix, the structural modifications and the paramagnetic point defects induced by external electron irradiations near room temperature in a simplified Ba1.16Al2.32Ti5.68O16 hollandite composition were studied mainly by EPR and NMR. Modifications of Al3+ and Ti4+ ions' environment were observed and are due to both the formation of oxygen vacancies and to barium ions displacement. Electron (Ti3+) and hole (O2) centres were observed. The stability of these centres was good at room temperature but thermal treatments performed between 50 and 850 °C generated new paramagnetic defects originating from previous defects. These new defects correspond to titanyl-type Ti3+ ions located on grain surface and to oxygen aggregates in their bulk.  相似文献   

20.
Ionic liquid‐derived polyoxometalate salts [mdsim]3[PM12O40] (where M = W and Mo) of two heteropolyacids H3PW12O40.nH2O and H3PMo12O40.nH2O were synthesized using 2‐methyl‐1,3‐disulfoimidazolium chloride ([mdsim][Cl]) ionic liquid and the corresponding heteropolyacids. Three equivalents of [mdsim][Cl] were treated with the respective Keggin‐structured heteropolyacids (one equivalent) in aqueous medium at room temperature to afford the water‐stable ionic polyoxometalates as acidic solids. They were completely characterized using spectroscopic and other analytical techniques including thermal analysis and Hammett acidity studies. The inherent Brønsted acidic properties of ─SO3H group of these polyoxometalate salts were studied for the nitration of aromatic compounds with 69% HNO3 at normal temperature and 80°C without use of any external concentrated sulfuric acid. These strongly acidic polyoxometalates display good recyclability and efficient reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号