首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
《Analytical letters》2012,45(8):1324-1333
This study describes the validation of an analytical method employing gas chromatography with flame photometric detection for the determination of organophosphate pesticides (diazinon, disulfoton, parathion, chlorpyrifos, and malathion) in strawberries. The method employed a QuEChERS dispersive solid phase extraction for the sample preparation. QuEchERS is inexpensive, fast, and easy for the separation of the analytes from the matrix. In addition, the method provided linear calibration curves, ranging from 0.10–1.00 µg g?1, for diazinon, disulfoton, parathion, and chlorpyrifos, and 0.10–2.00 µg g?1 for malathion. Recovery studies yielded values in the range from 81.64 to 100.00%. These results demonstrated the potential of the technique for the determination of organophosphate residues in strawberries.  相似文献   

2.
Commercial solid-phase extraction (SPE) cartridges with C18 bonded silica packings effectively cleaned up acetonitrile extracts of 3-g samples of fats and oils for determination of organophosphorus pesticide residues by gas chromatography with flame photometric detection. Cartridges from three different sources were tested and found to differ in lipid capacity and inertness (free silanol activity). Consequently, the amount of packing (i.e., number of cartridges) and/or the choice of eluent used were adjusted for each brand of cartridge to achieve optimum clean-up and analyte recovery. Seven pesticides with a wide range of polarity (acephate, azodrin, chlorpyrifos, diazinon, malathion, methamidophos and methyl parathion) were separated from coextracted lipids by elution with either acetonitrile or methanol, depending on the brand of cartridge used. Cartridges were regenerated by purging lipids with dichloromethane and were reused numerous times without apparent loss of effectiveness. Recoveries from vegetable oils and butterfat fortified with the seven compounds at levels of 0.05–0.87 μg g?1 ranged from 80 to 103%. Practical limits of determination range from 0.01 to 0.08 μg g?1, depending on analyte response.  相似文献   

3.
Summary A rapid and efficient multiresidue extraction procedure using ethyl acetate and sodium sulfate has been applied to the analysis of diazinon, methamidophos, chlorpyrifos, malathion, parathion, parathion-methyl, dimethoate and monocrotophos residues in many different kinds of vegetables. No cleanup step was required Concentrated extracts were analysed by gas chromatography with flame photometric detection in phosphorus mode. Recovery studies were performed in six kinds of matrices at two fortification levels. Recoveries were in the range 80–115%. The limit of quantification of the analytical method has been estimated as 0.01 ppm for diazinon, methamidophos and malathion, 0.03 ppm for chlorpyrifos, parathion, parathion-methyl and dimethoate and 0.1 ppm for monocrotophos. Experiments showed that potentially it should be possible to develop a rapid and universally applicable method for organophosphate pesticide residues in different matrices.  相似文献   

4.
Frequency responses associated with adsorption of gas-phase toluene, o-nitrotoluene, valproic acid and the pesticides parathion, malathion and disulfoton on uncoated and protein-coated piezoelectric sensors are reported. Valproic acid antiserum and antibody against parathion were included among the set of protein films studied. Responses, which were reversible in all cases, are attributed to chemisorption or physisorption on electrode and protein surfaces. Under the conditions used, no signals corresponding to selective immunochemical binding were found. Highly sensitive responses of protein-coated sensors to the pesticide species were confirmed, with the lower limit of detection being about 0.01 μg l?1 in nitrogen carrier gas.  相似文献   

5.
分散液液微萃取-气相色谱法快速测定水中23种有机磷农药   总被引:2,自引:0,他引:2  
建立了分散液液微萃取(DLLME)的新型样品前处理方法,并采用气相色谱/火焰光度检测器对饮用水中的治螟磷、甲拌磷、二嗪农、乙拌磷、甲基毒死蜱、甲基对硫磷、皮蝇磷、杀螟松、马拉硫磷、毒死蜱、倍硫磷、对硫磷、溴硫磷、嘧啶磷、甲基异硫磷、稻丰散、杀扑磷、丙溴磷、乙硫磷、三唑磷、三硫磷、哒嗪硫磷、亚胺硫磷23种痕量有机磷农药残...  相似文献   

6.
An electrochemical sensor was developed for the detection of organophosphate pesticides based on electrodeposition of gold nanoparticles on a multi-walled carbon nanotubes modified glassy carbon electrode. Cyclic voltammetry was employed in the process of electrodeposition. Field emission scanning electron microscope and X-ray diffraction techniques were used for characterization of the composite. Organophosphate pesticides (e.g. parathion) were determined using linear scan voltammetry. A highly linear response to parathion in the concentration range from 6.0?×?10?5 to 5.0?×?10?7 M was observed, with a detection limit of 1.0?×?10?7 M estimated at a signal-to-noise ratio of 3. The method has been applied to the analysis of parathion in real samples.  相似文献   

7.
气相色谱-火焰光度法测定土壤中有机磷农药残留   总被引:1,自引:0,他引:1  
建立了气相色谱-火焰光度(GC-FPD)分析土壤中敌敌畏、氧化乐果、二嗪农、乐果、甲基对硫磷、马拉硫磷、对硫磷、水胺硫磷、喹硫磷等9种有机磷农药残留量的方法。样品用丙酮-二氯甲烷(1:3)提取,浓缩、定容后用Hp-5MS(30m×0.25 mm×0.25μm)毛细管柱分离,FPD检测器检测。方法回收率在68.71%~110.39%之间;RSD在5.5%~11%之间;检出限在0.397~1.60μg/mL之间,方法可用于环境土壤样品中有机磷农药残留的测定。  相似文献   

8.
In this study, a methodology has been described for the determination of chlorpyrifos pesticide residue in pistachio oil based on a quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation with combined ion mobility spectrometry (IMS). The different parameters that could influence the QuEChERS- IMS for chlorpyrifos analysis were optimized. Under optimum conditions, the linear dynamic range was obtained over 0.4 to 20 μg g?1 with R 2 = 0.997 and precision as relative standard deviation was 7.1%. The limits of detection and quantification were 0.1 and 0.3 μg g?1 of chlorpyrifos, respectively. The recovery results of chlorpyrifos were at an acceptable range (average 78.3–92.3).  相似文献   

9.
In the present study the main factors that may influence the headspace single-drop microextraction (HS-SDME) of common pesticide contaminants (diazinon, lindane, chlorpyrifos ethyl, p,p′-DDE, and endosulfan) that may occur in honey were determined and an analytical protocol was further developed by the use of a multivariate optimization. The HS-SDME analytical method developed and two more analytical protocols for the determination of pesticides in honey: (i) by direct SDME (D-SDME), and (ii) by liquid–liquid extraction (LLE), were further validated for the determination of target analytes. The three methods were also applied in the same real honey samples and results were further discussed. By D-SDME, LODs ranged from 0.04?µg?kg?1 for β-endosulfan to 2.40?µg?kg?1 for diazinon and repeatability expressed as %RSD from 3 for lindane to 15 for diazinon and chlorpyrifos methyl; by HS-SDME, LODs ranged from 0.07?µg?kg?1 for p,p′-DDE to 12.54?µg?kg?1 for chlorpyrifos methyl and repeatability expressed as %RSD from 11 for chlorpyrifos methyl to 19 for p,p′-DDE; by LLE, LODs ranged from 0.09?µg?kg?1 for β-endosulfan to 19.31?µg?kg?1 for diazinon and repeatability expressed as %RSD from 6 for p,p′-DDE to 11 for lindane. For all target pesticides but p,p′-DDE that could not be recovered by D-SDME method tested. The proposed HS-SDME optimized in this study was shown to be the method of choice for the determination of diazinon in honey whereas the most favourable analytical characteristics from the comparative study performed were achieved by D-SDME.  相似文献   

10.
A monitoring study of pesticides belonging to different chemical families was carried out in Amvrakia lake (West Greece) waters after land use changes in the lake's basin. Based on land-use patterns, nine sampling points were selected. Pesticides were extracted by solid phase extraction (SPE) using Oasis HLB cartridges and analysed by gas chromatographic techniques with flame thermionic and mass-spectra detection. Pesticides detected during the monitoring survey include eight herbicides (alachlor, atrazine, s-metolachlor, pendimethalin, prometryne, propachlor, simazine, trifluralin) and one metabolite (deethyl atrazine) with concentration levels up to 807?ng?L?1 (recorded for alachlor), eight insecticides (azinphos methyl, chlorpyrifos, chlorpyrifos methyl, diazinon, dimethoate, fenitrothion, malathion, methidathion) with concentration levels up to 490?ng?L?1 (recorded for azinphos methyl) and six fungicides (benalaxyl, cyproconazole, fenarimol, pyrimethanil, triadimefon, triadimenol) with concentration levels up to 408?ng?L?1 (recorded for pyrimethanil). More frequently detected pesticides were atrazine, deethyl atrazine, alachlor, azinphos methyl, chlorpyrifos methyl, diazinon and pyrimethanil. The higher concentrations were measured during spring-early summer period, following seasonal application of pesticides and diminished significantly during winter. Littoral sampling stations presented higher pesticide concentration levels and more frequent detection. Aquatic risk assessment was based on the Risk Quotient (RQ?=?MEC/PNEC) deterministic method regarding three trophic levels: algae, aquatic invertebrates and fish. Non-acceptable risk for 10 compounds was observed when maximum concentrations were used. Compliance to EC environmental quality standards is also discussed.  相似文献   

11.
Abstract

The use of organophosphorus pesticides is undeniably beneficial in agriculture and veterinary medicine, but their excessive use can pollute the environment, as well as contaminate foodstuffs. The objective of this study was to assess contamination of vegetables and fruits available in Poland by organophosphate pesticides (ethoprophos, diazinon, chlorpyrifos, chlorpyrifos-methyl, parathion-methyl, fenchlorphos, merfos,, as well as to assess a potential health risk posed to consumers. The pesticide content was determined by gas chromatography-mass spectrometry (GC-MS). The pesticides were detected in the peel and pulp of vegetables and fruits from Polish crops, as well as imported ones. Pesticide levels in most products were higher in the peel than in the pulp. Neither chlorpyrifos-methyl nor fenchlorphos were found in the material under study. Chlorpyrifos was the pesticide occurring in the highest levels in the peel of both vegetables (31?ng?·?g?1 w.w.) and fruit (9.3?ng?·?g?1 w.w.). The Maximum Residue Level (MRL) for parathion-methyl was exceeded in some samples of zucchini pulp of Spanish origin and in the peel of potato from Poland. But levels of other pesticides in the studied vegetables and fruits were significantly lower than the current MRLs. The assessment of consumer health risk showed a significantly lower Lifetime Average Daily Dose (LADD) of pesticides under this study comparing to the Acceptable Daily Intake (ADI). Moreover, the Hazard Quotient (HQ) was low with a maximum of 3.93?×?10?2 for vegetables and 4.26?×?10?3 for fruits. These estimated HQs were within the safe acceptable limits, indicating low risk to human populations from exposure to organophosphorus pesticides in the study area.  相似文献   

12.
Palladium nanoparticles supported on MWCNTs (Pd/MWCNTs) were successfully prepared by a simple ethylene glycol reduction method in an oil bath. An electrochemical sensor based on Pd/MWCNTs nanocomposite-modified glassy carbon electrode was fabricated for the determination of methyl parathion by differential pulse voltammetry measurement. A highly linear response to methyl parathion in the concentration ranging from 0.10 μg mL?1 to 14 μg mL?1 was observed, and a detection limit of 0.05 μg mL?1 was obtained with the calculation based on signal/noise?=?3. The present work provides a simple and rapid approach to the detection of methyl parathion.  相似文献   

13.
SiO2 nanosheets (SNS) have been prepared by a chemical method using montmorillonite as raw material and were characterized by scanning electron microscopy and X-ray diffraction. SiO2 nanosheet–Nafion nanocomposites with excellent conductivity, catalytic activity, and biocompatibility provided an extremely hydrophilic surface for biomolecule adhesion. Chitosan was used as a cross-linker to immobilize acetylcholinesterase (AChE), and Nafion was used as a protective membrane to efficiently improve the stability of the AChE biosensor. The AChE biosensor showed favorable affinity for acetylthiocholine chloride and catalyzed the hydrolysis of acetylthiocholine chloride with an apparent Michaelis–Menten constant of 134 μM to form thiocholine, which was then oxidized to produce a detectable and fast response. Based on the inhibition by pesticides of the enzymatic activity of AChE, detection of the amperometric response from thiocholine on the biosensor is a simple and effective way to biomonitor exposure to pesticides. Under optimum conditions, the biosensor detected methyl parathion, chlorpyrifos, and carbofuran at concentrations ranging from 1.0?×?10?12 to 1?×?10?10?M and from 1.0?×?10?10 to 1?×?10?8?M. The detection limits for methyl parathion, chlorpyrifos, and carbofuran were 5?×?10?13?M. The biosensor developed exhibited good sensitivity, stability, reproducibility, and low cost, thus providing a new promising tool for analysis of enzyme inhibitors.
Figure
Performances and detection pesticides of a SiO2 nanosheet biosensor  相似文献   

14.
A novel magnetic mesoporous silica material was synthesized and used as the sorbent for the magnetic solid‐phase microextraction of diazinon and malathion before their quantification by high‐performance liquid chromatography with UV detection. The sorbent was synthesized by a surfactant‐templated one‐pot sol–gel procedure using SiO2‐coated Fe3O4 as the magnetic support, cetyltrimethylammonium bromide as the template and tetraethyl orthosilicate as the silicon source. The characteristics of the prepared sorbent were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction. The sorbent exhibited a high maximum adsorption capacity of 19.2 and 9.4 mg/g for diazinon and malathion, respectively. The parameters affecting the microextraction were optimized by the MultiSimplex method. Under the optimized conditions, the calibration graphs were linear in the concentration ranges of 0.3–50.0 and 0.5–50 μg/L with the limits of detection of 0.09 and 0.14 μg/L for diazinon and malathion, respectively. The relative standard deviations (n = 5) at a concentration level of 10.0 μg/L of analytes were less than 2.5 and 4% for intra and interday, respectively. The developed method was successfully used for the determination of diazinon and malathion in apple, tomato, cucumber, tap water, and well water samples.  相似文献   

15.
An ultra-preconcentration technique composed of solid-phase extraction (SPE) and dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame photometric detection (GC–FPD) was used for determination of thirteen organophosphorus pesticides (OPPs) including phorate, diazinon, disolfotane, methyl parathion, sumithion, chlorpyrifos, malathion, fenthion, profenphose, ethion, phosalone, azinphose-methyl and co-ral in aqueous samples. The analytes were collected from large volumes of aqueous solutions (100 mL) into 100 mg of a SPE C18 sorbent. The effective variables of SPE including type and volume of elution solvent, volume and flow rate of sample solution, and salt concentration were investigated and optimized. Acetone was selected as eluent in SPE and disperser solvent in DLLME and chlorobenzene was used as extraction solvent. Under the optimal conditions, the enrichment factors were between 15,160 and 21,000 and extraction recoveries were 75.8–105.0%. The linear range was 1–10,000 ng L?1 and limits of detection (LODs) were between 0.2 and 1.5 ng L?1. The relative standard deviations (RSDs) for 50 ng L?1 of OPPs in water with and without an internal standard, were in the range of 1.4–7.9% (n = 5) and 4.0–11.6%, respectively. The relative recoveries of OPPs from well and farm water sat spiking levels of 25 and 250 ng L?1 were 88–109%.  相似文献   

16.
Five organophosphorus pesticides (dichlorvos, diazinon, malathion, methyl parathion and coumaphos) were extracted from propolis by matrix solid-phase dispersion (MSPD) extraction using octadecylsilica (C18, 1.0 g) as dispersant material. The kind of solvent elution (acetonitrile or ethyl acetate), volume (8 mL and 15 mL), and adsorbent used to clean-up the extracts (graphitized carbon, florisil™ and silica) were optimized using fortified propolis samples (5.0 μg g−1). Recovery was determined by gas chromatography with mass spectrometric detection in selected ion monitoring mode (GC/MS-SIM) and statistical analysis was done to determine better extraction conditions. Relatively high recovery and lower relative standard deviation values (3.1–14.6%) were obtained when analytes were eluted with ethyl acetate from the MSPD column. Diazinon, malathion, methyl parathion, and coumaphos show recoveries of 72.7%, 84.6%, 62.6%, and 78.3%, respectively. In contrast, the recovery for dichlorvos was 53.8%. Additional adsorbents tested for clean-up and increase in solvent elution did not affect recoveries positively and caused a high background in chromatograms. Thus, final conditions were 1 mL of sample, 1 g C18 and 8 mL of ethyl acetate.  相似文献   

17.
A Varian Techtron model 63 carbon rod atomizer is used for the atomic absorption spectrometric determination of nanogram quantities of selenium. The pronounced interferences from the matrices in biological digests can be obviated by isolating selenium from sample matrices by precipitation with ascorbic acid. The precision of the determination is improved by incorporating 5000 μg Ni ml?1 in the analytical solutions. Selenium at μg g?1 and sub-μg g?1 levels in a variety of biological samples can be determined. The detection limit is 25 ng Se g?1.  相似文献   

18.
Beeswax is a complex mixture of lipophilic compounds and other components such as aliphatic alcohols and carotenoids. Then, extraction and clean-up for pesticide analysis in beeswax is a challenge. In this work, a multiresidue method for the analysis of dichlorvos (DCV), diazinon, malathion, methyl parathion and coumaphos (CMF) in beeswax was developed. The proposed approach is based on matrix solid-phase dispersion extraction. The adsorbent for sample clean-up was studied and a simplex-centroid cubic statistical design was applied to evaluate pure solvents and their binary and ternary mixtures to elute the analytes. Finally, Florisil and ethyl acetate were chosen as solid support and eluting solvent, respectively. After extraction, pesticides were separated and detected by gas chromatography/mass spectrometry. The method achieved acceptable recoveries (70–85%; except for DCV, 24–38%) with relative standard deviations below 5%. The repeatability of the method was lower than 8% and interday variability was below 12%. The limit of detection (LOD) for the analytes varies between 0.2 and 2.6 µg?kg?1 and limit of quantification from 0.93 to 8.8 µg?kg?1. LOD reached for CMF was below the maximum residue limit allowed by the legislation of the United States and Canada.  相似文献   

19.
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid‐phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected‐ion monitoring mode. Good linear relationships were obtained in the range of 0.1–50 μg/L for chlorpyrifos, and 0.05–50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54–86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.  相似文献   

20.
Efforts to improve agricultural productivity have led to a growing dependency on organophosphorus pesticides. Phosphorothioate and phosphorodithioate pesticides are organophosphorus pesticide subclasses with widespread application for the control of insects feeding on vegetables and fruits. However, even low doses of these pesticides can cause neurological problems in humans; thus, their determination and monitoring in agricultural foodstuffs is important for human health. Phosphorothioate and phosphorodithioate pesticides may be poorly ionized during electrospray, adversely affecting limits of detection. These pesticides can form complexes with Cu2+ and Ag+, however, potentially improving ionization. In the present work, we used electrospray ionization/mass spectrometry (ESI/MS) to study fenitrothion, parathion, diazinon, and malathion coordination complexes with silver and copper ions. Stable 1 : 1 and 1 : 2 metal/pesticide complexes were detected. Mass spectra acquired from pesticide solutions containing Ag+ or Cu2+ showed a significant increase in signal‐to‐background ratio over those acquired from solutions containing only the pesticides, with Ag+ improving detection more effectively than Cu2+. Addition of Ag+ to a pesticide solution improved the limit of detection by ten times. The relative affinity of each pesticide for Ag+ was related to complex stability, following the order diazinon > malathion > fenitrothion > parathion. The formation of Ag+–pesticide complexes can significantly improve the detection of phosphorothioate and phosphorodithioate pesticides using ESI/MS. The technique could potentially be used in reactive desorption electrospray ionization/mass spectrometry to detect phosphorothioate and phosphorodithioate pesticides on fruit and vegetable skins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号