首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore.  相似文献   

2.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

3.
This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5'-(methyloxycarbonyl)pentyl-1'-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films.  相似文献   

4.
Commercially available amphiphilic cyclodextrins, namely per-6-O-(tert-butyldimethylsilyl) alpha, beta and gamma cyclodextrins (TBDMS-alpha-, -beta-, and -gamma-CDs) were subjected to a thorough Langmuir monolayer characterization, using both traditional methods of surface manometry (pi/A isotherms, stability experiments) and modern micrometer/nanometer resolution (BAM, AFM) surface techniques. It has been found that inconsistent behavior regarding the isotherms reproducibility obtained upon compression of TBDMS-beta-CDs is due to the aggregation of the investigated molecules in chloroform and hexane, while good reproducibility ensured a mixed spreading solvent system of hexane/isopropanol 7:3 (v/v). Although the stability of films dropped from chloroform and hexane/isopropanol solvents below the equilibrium surface pressure (ESP) was comparable, pronounced differences were observed at pressures above ESP. The investigated TBDMS-CDs were successfully transferred onto cadmium stearate covered mica substrates. AFM images confirmed the presence of discontinuous multilayered films (10 nm heights) spread from chloroform versus monomolecular dispersion achieved in hexane/isopropanol.  相似文献   

5.
《Supramolecular Science》1998,5(5-6):631-634
Thin films of bis-(p-chlorophenoxy) (tetra-4-nitrophthalocyaninato)silicon, TNPcSi(OPhCl-p)2, were prepared by using Langmir-Blodgett techniques and the morphology of the film was investigated by AFM (atomic force microscope) analysis. It has been found that the LB films were successfully transferred onto substrates like mica, gold deposited glass, and pure glass with domains aggregated on the substrates. Surface plasmon resonance has been used to investigate the interaction between sulfur dioxide and a monolayer of TNPcSi(OPhCl-p)2 LB film. It has been found that the monolayer of LB film transferred onto gold deposited glass gave a 0.55° shift of resonant angle and an additional 0.45° shift of resonant angle after exposion in sulfur dioxide\atomospheric ambient for twenty minute. The UV–visible absorption spectrum of the LB films of TNPcSi(OPhCl-p)2 showed that there is chemical changes in the film after the exposure to the sulfur dioxide ambient. This work has shown a promising application as an optical gas sensor.  相似文献   

6.
Electron donor-acceptor dyad ensembles of a water-soluble cationic zinc porphyrin (viz., zinc tetrakis(N-methylpyridinium)porphyrin tetrachloride, Zn(TMPyP)) and a C60 derivative that bears an imidazole ligand (viz., 2-(phenylimidazolyl)fulleropyrrolidine, C60im) were assembled during the formation of Langmuir and then Langmuir-Blodgett (LB) films. Surface pressure versus surface area isotherms and surface pressure time profiles, as well as Brewster angle microscopic images documented that the Langmuir films formed were remarkably stable. Subsequently, these Langmuir films were transferred onto different solid substrates, by using the LB technique, for spectroscopic and photoelectrochemical characterization. The UV-vis spectroscopic investigations confirmed that the water-soluble Zn(TMPyP) was, indeed, transferred together with C60im in the LB films. Upon visible light illumination of these LB films, deposited on the ITO transparent conductive supports, a photocurrent generated in the C60im-Zn(TMPyP) system is ascribed to an efficient photoinduced electron transfer from the electron donor, porphyrin singlet excited-state to the electron acceptor, C60. Overall, internal photon-to-current efficiency, IPCE, of the photoanodic current generation (with ascorbate as a sacrificial electron donor) in the ITO/C60im-Zn(TMPyP)/ascorbate/Pt construct is over 5x larger than that of the photocathodic system (with methyl viologen, MV2+, as a sacrificial electron acceptor) in the ITO/Zn(TMPyP)-C60im/MV2+/Pt construct. Highly ordered film stacking favors vectorial electron transfer within the dyad, giving rise to the highest IPCE values of 2.5% determined for a photoanode that was composed of around 20 monolayer films.  相似文献   

7.
The new synthesized thiomacrocyclic ionophore 4-phenyl-4-sulfide-11-(1-oxodecyl)-1,7-dithia-11-aza-4-phosphacyclotetradecane has proven to form Langmuir and Langmuir-Blodgett (LB) films. This ionophore shows a large affinity for copper(II) ions. Thus, the influence of the subphase composition on the surface pressure-area isotherms has been studied. The LB films have been observed by AFM and the effect of the subphase composition and the deposition surface pressure on the LB films is discussed. AFM image morphology has been correlated to the ionophore molecular structure. Surface pressure-area isotherms and AFM images show that the presence of copper(II) ions has an important role in the film structure.  相似文献   

8.
Langmuir films have been fabricated from 4-[4'-(4'-thioacetyl-phenyleneethynylene)-phenyleneethynylene]-aniline (NOPES) after cleavage of the thioacetyl protecting group. Characterization by surface pressure vs area per molecule isotherms and Brewster angle microscopy reveal the formation of a high quality monolayer at the air-water interface. One layer Langmuir-Blodgett (LB) films were readily fabricated by the transfer of the NOPES Langmuir film onto solid substrates. X-ray photoelectron spectroscopy (XPS), surface polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and quartz crystal microbalance (QCM) experiments conclusively demonstrate the formation of one layer LB films in which the functional group associated with binding to the substrate can be tailored by the film transfer conditions. Using LB methods this molecule could be transferred to gold samples with either the amine or thiol group attached to the gold surface. The amine group is directly attached to the gold substrate (Au-NH(2)-OPE-SH) when the substrate is initially immersed in the subphase and withdrawn during the transfer process; in contrast, monomolecular films in which the thiolate group is attached to the gold substrate (Au-S-OPE-NH(2)) are obtained when the substrate is initially out of the subphase and immersed during the transfer process. The morphology of these films was analyzed by atomic force microscopy (AFM), showing the formation of homogeneous layers. Film homogeneity was confirmed by cyclic voltammetry, which revealed a large passivation of gold electrodes covered by NOPES monolayers. Electrical properties for both polar orientated junctions have been investigated by scanning tunnelling microscopy (STM), with both orientations featuring a nonrectifying behavior.  相似文献   

9.
In this work is reported the preparation and characterization of 5,10,15,20‐tetraphenylporphyrin (H2TPP) films at the water‐air interfaces. The surface pressure‐area isotherms (π‐A) and UV‐Vis spectroscopy were used to investigate the effect of the spreading methods and parameters on the porphyrin monolayer formation. Also, Langmuir‐Blodgett (LB) and Langmuir‐Schaefer (LS) films were deposited onto glass substrates in order to study the conformation changes in porphyrin molecular packing. Quartz crystal microbalance (QCM) was utilized as the active solid substrate for the development of the NO2 gas sensor based on the H2TPP molecular films. The results of π‐A curves have clearly shown the significant contribution of the preparation methods and processing parameters on the conformation of porphyrin molecular films. The UV‐Vis spectroscopy results using polarized absorption dichroism have indicated different molecular packing for porphyrin films deposited by LB and LS methods, with relative tilted angles of 50° ± 5° and 35° ± 5°, respectively. Moreover, the QCM response has given strong evidence that H2TPP porphyrin molecular films have performed as NO2 chemsensor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this communication we investigate two dyes N,N′-dioctadecyl thiacyanine perchlorate (NK) and octadecyl rhodamine B chloride (RhB) in Langmuir and Langmuir–Blodgett (LB) films with or with out a synthetic clay laponite. Observed changes in isotherms of RhB in absence and presence of nano-clay platelets indicate the incorporation of clay platelets onto RhB-clay hybrid films. AFM images confirm the incorporation of clay into hybrid films. FRET is observed in clay dispersion and LB films with and without clay. Efficiency of energy transfer is maximum in LB films with clay.  相似文献   

11.
The monomolecular organisation of symmetric, chemically modified tetraether lipids caldarchaeol-PO(4) was studied using Langmuir film balance, ellipsometry, and atomic force microscopy (AFM). Solid silicon wafer substrates were modified to hydrophobic, hydrophilic, and amino-silanised surfaces; and Langmuir-Blodgett (LB)-films were transferred onto each. LB-caldarchaeol-PO(4) films were subjected to further rinsing with organic solvent and additional physical treatments, to compare their resistance and stability on chemisorbed (amino-silanised) and physisorbed (hydrophobic and hydrophilic) surfaces. The resistance and stability of these monolayer films was characterized by ellipsometry and AFM, and film thickness was determined using ellipsometry. AFM was also employed to observe surface morphology. Monolayer films on hydrophobic surfaces were found to be more resistant to rinsing with organic solvent and additional physical treatments than monolayer films on either amino-silanised or hydrophilic surfaces. The hydrophobic effect with hydrophobic surfaces appears to support the formation of stronger caldarchaeol-PO(4) films on silicon wafer substrates, with increased resistance and stability.  相似文献   

12.
Elucidating the assembly mechanism of the collagen at interfaces is important. In this work, the structures of type I collagen molecules adsorbed on bare mica and on LB films of propanediyl-bis(dimethyloctadecylammonium bromide) transferred onto mica at zero surface pressure was characterized by AFM. On mica, the granular morphologies randomly distributed as elongated structures were observed, which were resulted from the interlacement of the adsorbed collagen molecules. On the LB films, the topographical evolution of the adsorbed collagen layers upon the increasing adsorption time was investigated. After 30 s, the collagen assembled into network-like structure composed of the interwoven fibrils, called as the first adlayer, which was attributed to its adsorption on the LB film by means of a limited number of contact points followed by the lateral association. One minute later, the second adlayer was observed on the top of the first adlayer. Up to 5 min, collagen layers, formed by inter-twisted fibrils, were observed. Under the same conditions after 1 min adsorption on LB film, the AFM image of the layer obtained in the diluted hydrochloric acid solution is analogous to the result of the sample dried in air, indicating that it is the LB film that leads to the formation of the network structure of collagen and the formation of the network structures of collagen layers is tentatively ascribed to the self-assembly of type I collagen molecules on LB film, not to the dewetting of the collagen solution during drying.  相似文献   

13.
We investigated the influence of arachidic acid/cadmium dication (AA/Cd(2+)) as a transfer promoter for the deposition of dicyanopyrazine-linked porphyrin (2-DCPP) Langmuir-Blodgett (LB) films on both hydrophobic and hydrophilic substrates. In the case of LB deposition on a hydrophilic substrate, the presence of AA/Cd(2+) does not improve 2-DCPP LB deposition. The poor transfer in the case of the hydrophilic surface is believed to be due to 2-DCPP not wetting the surface during the down-stroke deposition, and this is not improved by the transfer agent. However, on a hydrophobic substrate, deposition of 2-DCPP is significantly improved by the presence of AA/Cd(2+). Comparison of the UV-visible spectrum of a 2-DCPP LB film with that of 2-DCCP dissolved in chloroform reveals that the Soret and Q bands for the 2-DCPP LB film are broadened and red-shifted due to aggregation of porphyrin rings in the LB film. UV-visible spectral changes and ellipsometry as a function of the number of deposition layers suggest continuous transfer of 2-DCPP/AA onto the hydrophobic substrate and reproducibility in the deposition process. The Soret and Q bands of the 2-DCPP LB film upon acid vapor exposure have also been investigated, and these measurements may have chemical sensor applications.  相似文献   

14.
The structures of the mixed Langmuir-Blodgett (LB) films of conventional amphiphiles (CAs) and amphiphilic silane-coupling agents (SCAs) were investigated using IR spectroscopy, atomic force microscopy, and friction force microscopy. By using CAs having hydrogenated alkyl chains and SCAs having perfluorinated alkyl chains, phase-separated structures were formed with domains consisting of CAs surrounded by SCAs. The size and shape of the domains depended strongly on the mixed components, the mixing ratios, and the subphase temperature. In particular, usage of a CA having hydrogenated and perfluorinated portions in the hydrophobic group as one of the components led to the formation of nanothreads. When the phase-separated mixed LB films were heated, SCAs formed covalent bonds with the substrates having silanol groups whereas CAs did not have such ability. Rinsing the heat-treated LB films with ethanol selectively removed CAs with the SCA regions intact, resulting in the fabrication of templates. The structures of the templates reflected those of the original phase-separated LB films. LB transfer of amphiphiles on the templates led to the confinement of the amphiphiles in regions with the size and shape delineated by the templates. These results demonstrate that a variety of amphiphiles can be confined two-dimensionally in a designed manner.  相似文献   

15.
The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers.  相似文献   

16.
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.  相似文献   

17.
Polyamic acid (PAA) containing free-base porphyrin and zinc(II) porphyrin chromophores was synthesized by copolymerization of diphenylether-type tetracarboxylic dianhydride and diamines. The monolayer of the alkylamine salts of PAA (PAASs) at the air/water interface was deposited on solid substrates by the Langmuir-Blodgett (LB) technique. The PAAS LB films thus obtained were converted to polyimide (PI) LB films by chemical treatment. The fluorescence of porphyrin moieties in the PI LB film was observed, because of the weak electron-accepting properties of the diphenylether unit. Therefore, the photophysically important processes, such as photoinduced electron transfer, excitation energy transfer, and excitation energy migration could be investigated in relation to the layered nanostructures of the ultrathin PI films. The fluorescence spectrum suggested that the aggregation of porphyrin moieties in the PI LB films was effectively prevented by the use of polymeric films. The surface plasmon (SP) measurement showed that the thickness of the monolayers was 0.9-1.0 nm for PAAS films and 0.32-0.40 nm on average for PI LB films. The absorption dichroism of the Soret band of porphyrin indicated that porphyrin moieties in the PAAS and PI LB films are oriented in parallel with the substrate. These results showed that the orientation and the spatial distribution of porphyrin units can be efficiently regulated in the PI LB films in a nanometer dimension.  相似文献   

18.
Langmuir-Blodgett (LB) film formation has been investigated for polymers in which non-linear optical (NLO) moieties are attached to the side chain of a polymethacrylate (PMA) backbone. Polymer monolayers were successfully transferred onto hydrophilic glass substrates using a moving-wall type LB trough. The LB films were characterized by pressure-area isotherms, polarized ultraviolet visible spectra, ellipsometry, and second harmonic generation measurements. The characterization shows that NLO moieties in the side chain are inclined at a shallow angle to the plane of the substrate. The second-order nonlinear optical coefficient and molecular hyperpolarizability were also calculated. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
具有不同取代链长的卟啉衍生物LB膜的结构研究   总被引:3,自引:0,他引:3  
本文研究了三种羧酸取代的四苯基卟啉衍生物在空气/Cd^2^+水溶液界面上所形成的单层膜及LB膜。这三种卟啉衍生物中, 一种没有脂链, 另外两种具有不同长度的脂链。由π-A等温线得到的平均表观分子面积相差很大。紫外-可见光谱表明, LB膜中卟啉的Soret吸收带相对于溶液的吸收均红移, 但红移程度不同。LB膜的偏振紫外-可见光谱表明, LB膜中三种卟啉衍生物的卟啉环具有基本一致的取向。运用亚相降低法得到了三种卟啉衍生物单层LB膜, 其紫外-可见光谱与用垂直提拉法得到的LB膜的紫外-可见光谱具有一致的特征。这些结果表明: 卟啉衍生物有无取代链及取代链长的不同对平均表观分子面积的大小和膜中环间的距离有影响, 但对环的取向没有影响。环的取向由环本身及环上的亲水取代基来确定。气/液界面上三种卟啉衍生物的单层膜中环也具有一致的取向, 且与LB膜中环的取向相差不大。提拉不会对膜中环的取向及膜的结构造成大的改变。  相似文献   

20.
The Langmuir and Langmuir-Blodgett (LB) techniques have been applied in a novel approach to build structurally well-ordered, oriented, and organized assemblies of water-soluble single-wall carbon nanotubes (ws-SWCNTs) at the air/water and air/solid interfaces. The SWCNTs were rendered hydrophilic by complexing them with a quenched polyelectrolyte. We observed that the ws-SWCNT concentration at the air/water interface increases with time condensing into different patterns, among which are isolated soap-froths, rings, and the aggregation of cumuli-like 2D-structures. These patterns were recorded at different compression-expansion stages by Brewster angle microscopy (BAM). From the isotherm measurements, we are able to determine the diffusion process by which ws-SWCNT concentration builds up at the water surface. The corresponding LB films were very stable and could be transferred onto mica substrates easily. Atomic force microscopy (AFM) images revealed that the morphology of these films is surface-pressure dependent, and aligned structures with a nematic-like order formed closely packed mono- or multilayer films. The assembly of 2D-nanostructures by means of this approach offers a great potential for emergent technological applications using modified water-soluble SWCNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号