首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymers imprinted with (S)-4-phenyl-2-oxazolidone and (S)-4-benzyl-2-oxazolidone have been prepared by non-covalent imprinting. A combinational procedure was used to optimize the functional monomer and crosslinker. A copolymer of methacrylic acid and divinylbenzene resulted in the best chiral recognition. The ratio of template to functional monomer and solvent in the pre-polymerization mixture were also optimized. The imprinted polymers were used as stationary phases in high-performance liquid chromatography. The MIPs were more selective when prepared using a less polar solvent, except for toluene. Effective separations of the enantiomers of racemic 4-phenyl-2-oxazolidone and 4-benzyl-2-oxazolidone were achieved by use of acetonitrile as mobile phase; no cross-selectivity was observed. Interactions between functional monomers and template were investigated by 1H NMR spectroscopy. The results suggest that hydrogen-bonding between the functional monomer and the template and π–π stacking interaction between the cross-linker and the template may contribute to chiral recognition.  相似文献   

2.
To clarify the role of diluents in the preparation of molecularly imprinted polymers utilizing only hydrogen bonding, we investigated the effects of diluents by using different solvents. Melatonin (N-acetyl-5-methoxytryptamine), an amide bond and indole ring-containing hormone was chosen as the target molecule. N-Propionyl-5-methoxytryptamine was used as the pseudo template, methacrylic acid as the functional monomer, and solvents were used as diluents. Interactions between the template, the functional monomer, melatonin, and the solvents, were observed by 1H NMR spectroscopy. The polymers were evaluated by high-performance liquid chromatography. The results suggest the hydrogen bonding-acceptor capacity of the solvent is the most important factor in the preparation of molecularly imprinted polymers for hydrogen bonding-donating molecules. Hydrogen bonding between the template, the functional monomer, and solvent can be estimated from the chemical shifts in 1H NMR spectra of those molecules in the solvent.  相似文献   

3.
高吉刚  陈长宝  王荣荣  周杰 《化学学报》2008,66(9):1067-1073
设计合成了一种新型功能单体N-(p-乙烯基苄基)-N,N-二[2-(3-羧基丙酰氧基)乙基]胺. 采用质子核磁共振、红外光谱及元素分析对单体分子的结构进行了表征, 利用荧光猝灭法和同步荧光法研究了单体与牛血清白蛋白的结合机理, 结果表明在pH 7.4离子强度为0.5 mol•L-1条件下, 单体与牛血清白蛋白中的色氨酸残基形成稳定的复合物, 其结合比为2∶1, 表观结合常数KA=2.239×1011 L2•mol-2. 以该单体为功能单体, 牛血清白蛋白为模板分子, N,N'-亚甲基双丙烯酰胺为交联剂和多孔聚偏二氟乙烯膜为支持膜, 在水介质中制备了一个分子印迹聚合物复合膜. 渗透实验表明, 这个印迹复合膜对模板分子牛血清白蛋白的渗透量要远高于对照的人血清白蛋白和卵蛋白, 通过与非分子印迹膜对照也说明了此分子印迹复合膜对模板分子高的渗透选择性.  相似文献   

4.
This study aimed at elucidating the chiral recognition mechanism with molecularly imprinted polymers (MIPs) in aqueous environment. The system used ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), and 4-l-phenylalanylamino-pyridine (4-l-PheNHPy) as the cross-linking monomer, functional monomer and template, respectively, to assemble the imprinted polymer. A self-assembly mechanism, which includes the pre-organizing functional monomers around template before polymerization process, was proposed. This mechanism was supported by NMR titration test. Interactions between functional monomer and template were observed using UV-Vis spectroscopy of solutions of these components as well. These studies indicated a 1:2 molecular complex dominantly formed between 4-l-PheNHPy and MAA. Association constant was estimated to be 97,000 M−2. Based on these results, a model mainly involving two-spot interaction was proposed evolving from our reported concept of exact placement of functional group. Ionic interaction between the primary amino group of 4-l-PheNHPy and carboxylic acid group inside the microcavity on MIPs was believed to play a predominate role in the enantioselectivity as supported by the observation of the relationship between the retention factor of 4-l-PheNHPy and the pH of mobile phase. While thermodynamic study at different pH revealed that, the interaction between the pyridyl group of 4-l-PheNHPy and the carboxylic acid group on the MIPs is also strong, implying that it also plays a profound role in determining the highly chiral selectivity of MIPs.  相似文献   

5.
Conventional drugs are usually formulated for the immediate release of the medicinal substances and for obtaining the desired therapeutic effect. The aim of this paper was to investigate the possible interactions between Vitamin B10 and β-cyclodextrin (β-CD), to determine the physical-chemical characteristics and the interactions present in the corresponding inclusion compound. The so-obtained compounds were characterized by X-ray diffraction, DSC and FTIR spectroscopy. 1H NMR and UV–vis spectroscopic methods were employed to study the inclusion process in aqueous solution. The X-ray powder diffraction patterns demonstrate the inclusion compound formation, especially for the lyophilized product where the amorphous phase dominates. The existence of the inclusion compounds obtained by different methods was confirmed by comparing with DSC and FTIR data of the pure compounds and the (1:1) Vitamin B10:β-CD physical mixture (pm). 1H NMR measurements on aqueous solutions of Vitamin B10 and β-CD in D2O allowed us to establish the corresponding Vitamin B10’s and cyclodextrin’s protons implied in the complexation process. 2D NMR spectroscopy established the geometry of the inclusion complex. 1H NMR, UV–Vis and fluorescence data were used to obtain the stoichiometry and the stability constant of the complex.  相似文献   

6.
As is well‐known, the C2?H proton of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([Emim]BF4) and 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim]BF4) has a strong ability to form hydrogen bonds. The purpose of this work is to evaluate the effect of the interactions of the C4?H and C5?H protons on the microstructure of [Emim]BF4 and [Bmim]BF4 with water by using 1H NMR spectroscopy. The differences between the relative 1H NMR chemical shifts of C2?H, C4?H, and C5?H and between the interaction‐energy parameters obtained from these chemical shifts are minor, thus suggesting that the interactions of C4?H and C5?H may have a considerable effect on the microstructure. To confirm this, the viscosities of the systems are estimated by using the interaction‐energy parameters obtained from the 1H NMR chemical shifts of the three studied aromatic protons and water, showing that the interactions of C4?H and C5?H also play an important role in the microstructure.  相似文献   

7.
A microphase‐separated, amphiphilic graft copolymer consisting of a poly (vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains, (PVC‐g‐POEM at 62:38 wt %) was synthesized via atom transfer radical polymerization (ATRP). Nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM) clearly revealed that the “grafting from” method using ATRP was successful and that the graft copolymer molecularly self‐assembled into discrete nanophase domains of continuous PVC and isolated POEM regions. The self‐assembled graft copolymer film was used to template the growth of silver nanoparticles in solid state by introducing a AgCF3SO3 precursor and a UV irradiation process. The in situ formation of silver nanoparticles in the graft copolymer template film was confirmed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering. FTIR spectroscopy and X‐ray photoelectron spectroscopy also demonstrated the selective incorporation and in situ formation of silver nanoparticles within the hydrophilic POEM domains, presumably due to strong interactions between the silver and the ether oxygen in POEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3911–3918, 2008  相似文献   

8.
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).  相似文献   

9.
The monomer 2‐methyl‐3‐oxo‐5‐phenyl‐4‐pentenonitrile (MOP) was prepared by reaction of ethyl cinnamate and propionitrile in alkaline mixture. This monomer exhibits three possible tautomeric forms. The tautomeric equilibria of MOP and its copolymers with styrene in different solvents were analyzed by 1H NMR spectroscopy. The bulk and solution radical copolymerization initiated with azobisisobutyronitrile was carried out at 60 °C. The products were characterized by 1H NMR, 13C NMR, HSQC NMR, HMBC NMR, and FTIR spectroscopies. The weight‐average molecular weight and polydispersity index were analyzed with size exclusion chromatography. The monomer reactivity ratios were obtained with the Fineman‐Ross method, obtaining a value of r1r2 = 0.286. MOP copolymer composition as well as the nature of the solvent significantly affected the tautomeric equilibrium. Regression analysis of the copolymer composition with solvatochromic parameters showed a good linear correlation, as quantitatively expressed by means of the linear solvation energy relationship using the empirical set of Kamlet‐Taft solvent parameters. This behavior could be attributed to polymer–polymer or polymer‐solvent interactions prevalent in solvents of different polarity, which are responsible for changes in macromolecular chain conformations, as confirmed by FTIR and viscometric studies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A type of surface imprinting over magnetic Fe3O4 nanoparticles utilizing erythromycin‐A as a template for use in the separation and recovery of erythromycin was developed and investigated. As the intermolecular forces play a key role in the performance of imprinted materials, differential scanning calorimetry, and 1H NMR spectroscopy was employed to evaluate the interactions between erythromycin and the functional monomer β‐cyclodextrin. To synthesize the surface imprinted polymers, magnetic Fe3O4 nanoparticles, the core materials, were modified with a free radical initiator to initialize polymerization in a “grafting from” manner. Then using acryloyl‐modified β‐cyclodextrin as the functional monomer and ethyleneglycol dimethacrylate as the cross‐linker, thin erythromycin‐imprinted films were fabricated by the radical‐induced graft copolymerization of monomers on the surface of the Fe3O4 nanoparticles. Selectivity experiments showed that the erythromycin‐A‐imprinted materials had recognition ability toward erythromycin derivatives. Finally, these magnetic molecularly imprinted particles were successfully used for the separation and enrichment of erythromycin from the mother liquor. The recovery, detected by high‐performance liquid chromatography and differential pulse voltammetry, approached 97%. The combination of the specific selectivity of the imprinted material and the magnetic separation provided a powerful tool that is simple, flexible, and selective for the separation and recovery of erythromycin.  相似文献   

11.
The quadruply bonded Mo24+ complex Mo2(DAniF)3(OOCC6F5) ( 1 ) [DAniF = N,N′‐bis(4‐methoxyphenyl)formamidinate] was synthesized. The solvate Mo2(DAniF)3(OOCC6F5) · (C6H6) ( 2 ) and co‐crystal Mo2(DAniF)3(OOCC6F5) · (C10H8) ( 3 ) complexes were obtained by self‐assembly of crystals of 1 with benzene and naphthalin, respectively. Compounds 1 , 2 , and 3 were structurally characterized by single‐crystal X‐ray diffraction. In monomer 1 , the Mo–Mo bond length of 2.0874(6) Å is typical for dimolybdenum quadruple bonds. The solvate complex 2 was stabilized by weak π–π stacking interactions between the benzene molecule and the pentafluorophenyl ring (as indicated by a center‐to‐center distance of 3.838(10) Å and a center‐to‐plane distance of 3.712(4) Å between phenyl and pentafluorophenyl ring) and intermolecular C–H ··· F–C interactions (the shortest F ··· H distance is 2.560(2) Å). In complex 3 , a one‐dimensional chain was formed by C–H ··· F–C interactions between the hydrogen atoms in naphthalin and the fluorine atoms in the monomer (H ··· F distances of 2.582(2) Å). Information on the structures in solution of the three crystals was obtained by 1H NMR spectroscopy.  相似文献   

12.
The possible inclusion complexes of Cp2NbCl2 into calixarenes hosts have been investigated. The existence of a true inclusion complex in the solid state was confirmed by a combination of NMR, ab-initio calculations, thermogravimetric analysis, FTIR, Raman and PXRD. Ab-initio calculations, 1H NMR solution and solid state 13C CP-MAS NMR results demonstrated that p-sulfonic calix[6]arene does form an inclusion complex with Cp2NbCl2. Raman spectroscopy showed, for the inclusion compound of p-sulfonic calix[6]arene-Cp2NbCl2, a band between 500 and 850 cm−1 characteristic of Nb-O vibration. This result suggests that Nb(V) may engage in coordination with the oxygen of the sulfonate group, as part of the host-guest interaction. However, it is important to mention that the niobocene dichloride (Cp2NbCl2) dissolves in water and undergoes oxidation and hydrolysis processes to yield Cp2NbCl2(OH) species. For that reason this band does not exclude that the Nb-O band belongs to Cp2NbCl2(OH). Solid State 13C CP-MAS NMR and solution 1H NMR spectroscopies together with ab-initio results showed that Cp2NbCl2 is included in the p-sulfonic calix[6]arene cavity, with both Cp rings inside the cavity. In contrast, the solution 1H NMR results demonstrated that calix[6]arene does not form inclusion complex with Cp2NbCl2 in CDCl3 solution. Cp2NbCl2 is not included in the calix[6]arene cavity, possibly due to the lack of sulfonate heads which promote Nb-O interactions and assist the inclusion of Cp2NbCl2 into the cavity.  相似文献   

13.
A computational approach to screening monomer for preparing molecularly imprinted polymer (MIP) was proposed, using the binding energy, ΔE, of a template molecule and a monomer as a measure of their interaction. For a specified template molecule, a monomer of higher ΔE is suitable for preparing the MIP. To examine the validity of this approach, theophylline (THO) was chosen as the template molecule and methacrylic acid (MAA), acrylamide (AA) and 2-(trifluoromethyl)acrylic acid (TFMAA) were as the functional monomers, respectively. Density functional theory (DFT) at B3LYP/6-31+G**//B3LYP/3-21G level was used to calculate ΔE. It was shown that TFMAA gave the largest ΔE while AA gave the smallest. The details of the interaction between the THO with these monomers were also given by this computing approach. The adsorption of THO on the MIP synthesized using different monomers was studied. The MIP synthesized using TFMAA as monomer showed the highest selectivity to THO while the MIP from AA gave the lowest, as predicted from the ΔE calculation. 1H NMR spectroscopy showed that, compared to MAA and AA, a stronger H-bond interaction is formed between TFMAA and THO. FT-IR analysis of the MIPs prepared using these three monomers confirmed the existence of CO and OH groups, which forms H-bond with THO. The results described above have given an insight into the interaction between THO and the monomers, and shown the use of ΔE to facilitate the selection of monomers for the synthesis of MIP.  相似文献   

14.
The aim of this study was to observe the chiral separation of a series of C2-asymmetric bi-naphthyl compounds on molecularly imprinted polymers (MIPs) using 1,1′-bi-2-naphthol (BINOL) as template. MIP prepared using 4-vinylpyridine as the functional monomer showed better chiral recognition for the template than the MIPs prepared using acrylamide, 2-(diethylamino)ethylmethacrylate and 2-vinylpyridine, respectively. 1H-NMR was used for comparison of the interactions between template and functional monomers. For chromatographic analysis the effects of mobile phase and temperature on the chiral separation were investigated. When 4-vinylpyridine was employed as the functional monomer, chiral separation of 1,1′-bi-2-naphthol and its analogues were studied. The MIP also demonstrated an ability to discriminate between enantiomers of structurally related compounds that had not been imprinted. The thermodynamic parameters of interactions between substrates and MIP in acetonitrile based mobile phase were investigated by the Van’t Hoff equation. In this study, the specific hydrogen-bonding interactions seemed to be the key factor to achieve chiral separation.  相似文献   

15.
The mechanism for the interaction of thioflavin T (ThT) with amyloid fibrils at the molecular level is not known. Here, we used 1H NMR spectroscopy to determine the binding mode of ThT on the surface of fibrils from lysozyme and insulin. Relayed rotating‐frame Overhauser enhancements in ThT were observed, indicating that the orientation of ThT is orthogonal to the fibril surface. Importantly, the assembly state of ThT on both surfaces is different. On the surface of insulin fibrils, ThT is oligomeric, as indicated by rapid 1H spin‐lattice relaxation rate in the rotating frame (R1ρ), presumably due to intermolecular dipole–dipole interactions between ThT molecules. In contrast, ThT on the surface of lysozyme fibrils is a monomer, as indicated by slower 1H R1ρ. These results shed new light into the mechanism for the enhancement of ThT fluorescence and may lead to more efficient detectors of amyloid assemblies, which have escaped detection by ThT in monomer form.  相似文献   

16.
The title cluster, a deactivation product in the catalytic dehydrogenation of glycerol, was characterized by XRD, DFT calculations, HRMS, FTIR spectroscopy, and NMR spectroscopy. Experimental/computational studies located the 14 H ligands, and all 1H and 13C{1H} NMR resonances were assigned. The structure contains an unprecedented Ir6H14 core with two CO and eight IMe ligands.  相似文献   

17.
A dipyrromethane functionalized monomer; 5-(4-tert-butylphenyl)dipyrromethane (BPDP) was synthesized. The structure of the monomer was characterized by nuclear magnetic resonance (1H NMR and 13C NMR) and Fourier transform infrared (FTIR) spectroscopies. Electrochemical polymerization of BPDP was performed in acetonitrile (AN)/LiClO4. The resulting conducting polymer was characterized by FTIR spectroscopy and electrical conductivity measurements. Spectroelectrochemical behavior and switching ability of P(BPDP) film were investigated by UV-Vis spectroscopy. P(BPDP) revealed color changes between yellow and blue in the reduced and oxidized states, respectively. In order to investigate electrochromic properties and stability of the P(BPDP) in electrochromic device (ECDs) application, dual type polymer ECD based on P(BPDP) and poly(ethylene dioxythiophene) (PEDOT) were constructed. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis spectroscopy and cyclic voltammetry.  相似文献   

18.
Acrylonitrile/pentyl acrylate (A/P) copolymers of different monomer composition were prepared by solution polymerization using benzoyl peroxide as initiator. Copolymer compositions were determined by elemental analysis and quantitative 13C1H‐NMR spectroscopy. The comonomer reactivity ratios, determined by both Kelen Tudos (KT) and nonlinear error in variables (EVM) methods are rA = 0.75 and rp = 0.45. 2‐D heteronuclear correlation spectroscopy (HSQC) was used to simplify the complex 1H spectra of A/P copolymers in terms of configurational and compositional sequences. The microstructure was obtained in terms of the distribution of A‐ and P‐ centered triad sequences from 13C1H‐NMR spectra of the copolymers. The copolymerization mechanism was found to follow a first order Markov Model. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 533–543, 1999  相似文献   

19.
A new trifunctional monomer, 1,3,5-tris(3′,4-carboxyphenyl)benzene trianhydride (TAn), was synthesized and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopy. Subsequently, one-step high-temperature polymerization of TAn and a series of commercially available diamine monomers such as p-phenylenediamine (PDA, 1), 4,4′-oxydianiline (ODA, 2), and 1,5-diaminonaphthalene (DAN, 3) successfully yielded wholly aromatic anhydride-terminated hyperbranched poly(ester-imide)s HBPEI 1, 2, and 3, respectively. Gelation was effectively avoided by controlling 1:1 M ratio of A2 and B3 monomers and maintaining total solid content 10 mmol, thereby, producing a novel family of aromatic HBPEIs with inherent viscosities (ηinh) of 0.17-0.28 dL/g. As-prepared HBPEIs were fully characterized by FTIR spectroscopy and were soluble in DMAc, DMSO and NMP. Degree of branching (DB) by 1H NMR analysis of the HBPEIs was estimated to be 0.52-0.56. Differential scanning calorimetry (DSC) showed glass transition temperatures (Tg) between 198 and 208 °C and the synthesized polymers were thermally stable. Furthermore, crystallinity of the polymers was evaluated by means of X-ray diffraction patterns.  相似文献   

20.
The inclusion of α-lipoic acid (LA) in β-cyclodextrin (β-CD) by increasing the aqueous solubility and photostability can enhance its medicinal use in the oral administration. Different preparation methods were employed to obtain an α-lipoic acid-β-cyclodextrin (LA-β-CD) inclusion complex and to determine the physical–chemical characteristics and the interactions present in this compound. The formation of the solid inclusion compound was confirmed by X-ray powder diffraction, differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). FTIR and DSC data confirm the new obtained compound. The crystalline structure of this compound belongs to the monoclinic system with four molecules in the unit cell. 1H NMR spectroscopic method was employed to study the inclusion process in aqueous solution. Job plots derived from the 1H NMR spectral data demonstrated an 1:1 stoichiometry of the inclusion complex in liquid state. 2D NMR data suggest the orientation of LA with the carboxyl group near to narrower rim of the β-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号