首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have studied numerically a rectifying effect in an underdamped Josephson junction ratchet array driven by dc and ac current. The array consists of both alternating potential barriers and alternating inter-capacitances along the direction of vortex flow. The guide banks of high critical currents are assigned for all the longitudinal junctions to prevent the percolative pattern of vortex motion. In some junction parameters, we see a rectifying effect which indicates a finite value of the time-averaged voltage at zero dc bias. The directional dependence of the vortex motion becomes fairly large when the junction parameters lie in an optimal range which gives rise to a Shapiro step at zero dc bias. Such a rectifying effect survives for small thermal fluctuation, but eventually disappear beyond a certain critical temperature.  相似文献   

2.
We study the transport of vortices excited by an ac current in an Al film with an array of nanoengineered asymmetric antidots. The vortex response to the ac current is investigated by detailed measurements of the voltage output as a function of ac current amplitude, magnetic field, and temperature. The measurements revealed pronounced voltage rectification effects which are mainly characterized by the two critical depinning forces of the asymmetric potential. The shape of the net dc voltage as a function of the excitation amplitude indicates that our vortex ratchet behaves in a way very different from standard overdamped models. Rather, the repinning force, necessary to stop vortex motion, is considerably smaller than the depinning force, resembling the behavior of the so-called inertia ratchets. Calculations based on an underdamped ratchet model provide a very good fit to the experimental data.  相似文献   

3.
Current-driven dynamics of Josephson junction networks (JJNs) is studied using numerical simulations. We consider a JJN with an asymmetric and periodic potential of vortices, which is realized by saw-tooth modulation of junction critical currents. When external ac currents are applied to the JJN in a magnetic field, there appears a ratchet effect, and then directed motion of vortices is induced in certain system parameter regimes. A ratchet behavior is observed even for JJNs with weak structural disorder. We clarify the vortex pinning and dynamics in the JJN as a ratchet system.  相似文献   

4.
We study the effect of multiple interpenetrating pinning arrays on the vortex motion in the presence of an ac driving force, f d (t), by using extensive molecular dynamics (MD) simulations. Firstly, the response to a square ac wave f d (t) has been explored for the vortices interacting with a periodic square pinning array which has different pinning strengths and sizes. The effect of the type of an ac drive and its amplitude on the oscillatory dynamics of vortices have been investigated in detail. For very low displacements of the vortices, we have found that the single-particle model can produce results analytically similar to the ones obtained by the MD simulations. It is shown that the collective motion of vortices can be controlled easily by varying the number of multiple interpenetrating square pinning lattices (N SPSL). A regular sequence of peaks has been observed for N SPSL = 3 in the time evolution of the average velocity of the vortices (i.e., V? x - t curves). The number of peaks (N peak) strongly depends on the magnitude of f d (t), and increases with increasing the magnitude of f d . The close relation between N peak and f d is considered as an indication of controlling vortex motion in a multiple periodic pinning structure. Finally, the variation of the power spectrum of noise S(ν) with N SPSL has been investigated. For N SPSL = 3, it has been found that the plastic motion of the row of vortices evolves at low frequencies, i.e., 1/ν behavior, whereas, at high frequencies, S(ν) shows a typical behavior of Gaussian white noise.  相似文献   

5.
Quantum ratchet effect for vortices   总被引:1,自引:0,他引:1  
We have measured a quantum ratchet effect for vortices moving in a quasi-one-dimensional Josephson junction array. In this solid-state device the shape of the vortex potential energy, and consequently the band structure, can be accurately designed. This band structure determines the presence or absence of the quantum ratchet effect. In particular, asymmetric structures possessing only one band below the barrier do not exhibit current rectification at low temperatures and bias currents. The quantum nature of transport is also revealed in a universal/nonuniversal power-law dependence of the measured voltage-current characteristics for samples without/with rectification.  相似文献   

6.
We examine jamming and ratchet effects for vortex matter in superconductors with asymmetric funnel geometries. We show that the vortex–vortex interactions can induce a clogging or jamming effect where it becomes increasingly difficult for the vortices to move through the system. We also find that commensurability effects can arise when certain vortex configurations form highly symmetrical structures in the funnel plaquettes. Due to the asymmetry, the critical currents are different for driving in different directions, leading to a diode effect. We also discuss other possible geometries and approaches that could be used to explore jamming in vortex matter, such as an analog to a granular hopper and a single driven vortex probe moving through an array of other vortices.  相似文献   

7.
In this paper we investigate the behavior of moderate size two-dimensional classical arrays of Josephson junctions in presence of an external oscillating field. We have included in the model the effects due to mutual inductance terms, and we have employed an explicit set of differential equations. We have found that the discretization parameter - i.e. the coupling term due to the inductance of the loops - is the most important parameter to determine the height of the Shapiro steps for a given amplitude and frequency of the rf-bias. The amplitude of the Shapiro steps in the case of zero frustration as a function of the coupling term shows a remarkable minimum for intermediate values when we retain all terms of the full model with mutual inductances, while the limits for very large and very small values of they are the same of the single Josephson junction. For the case of frustration 1/2 the Shapiro step becomes smaller in the rigid limit (i.e., small ) as expected for the XY model, and tends to the limit value of the single junctions for the decoupled case (i.e., large ). Received 9 November 1998 and Received in final form 6 April 1999  相似文献   

8.
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.  相似文献   

9.
With the recent observation of graphene-like Landau levels at the surface of topological insulators, the possibility of fractional quantum Hall effect, which is a fundamental signature of strong correlations, has become of interest. Some experiments have reported intra-Landau level structure that is suggestive of fractional quantum Hall effect. This paper discusses the feasibility of fractional quantum Hall effect from a theoretical perspective, and argues that while this effect should occur, ideally, in the n=0 and |n|=1 Landau levels, it is ruled out in higher |n| Landau levels. Unlike graphene, the fractional quantum Hall effect in topological insulators is predicted to show an interesting asymmetry between n=1 and n=−1 Landau levels due to spin-orbit coupling.  相似文献   

10.
In this work we propose a ratchet effect which provides a general means of performing clocked logic operations on discrete particles, such as single electrons or vortices. The states are propagated through the device by the use of an applied ac drive. We numerically demonstrate that a complete logic architecture is realizable using this ratchet. We consider specific nanostructured superconducting geometries using superconducting materials under an applied magnetic field, with the positions of the individual vortices in samples acting as the logic states. These devices can be used as the building blocks for an alternative microelectronic architecture.  相似文献   

11.
Superconducting Nb thin films with a spacing-graded array of holes were prepared by electron beam lithography. Two films with different hole gradients were fabricated. The ac-driven vortices were investigated in Nb superconductors with a spacing-graded array of holes. The measurements revealed pronounced rectified voltage when the vortex lattice is driven by an ac injected current. The rectified voltage is mainly caused by the strength of the vortex–vortex interaction. The rectified motion of a vortex is affected by the pinning potential of the spacing-graded array and the applied magnetic field. The vortex–vortex interaction strength changes the effective pinning landscape of the vortices and an asymmetric potential is formed. Vortices depin easily from high concentration to low concentration of pinning sites. In both samples, the ac-driven vortices exhibit a variety of dynamical responses and the rectified voltage is tunable with the applied magnetic field.  相似文献   

12.
We investigate the rectification of an ac bias in Luttinger liquids in the presence of an asymmetric potential (the ratchet effect). We show that a strong repulsive electron interaction enhances the ratchet current in comparison with Fermi-liquid systems, and the dc I-V curve is strongly asymmetric in the low-voltage regime even for a weak asymmetric potential. At higher voltages the ratchet current exhibits an oscillatory voltage dependence.  相似文献   

13.
Triplet superconductors such as Sr2RuO4 and NaxCoO2·yH2O are now found to be p-wave (px±ipy) or f-wave ((px±ipy)coscpz) superconductors. In conventional singlet superconductors, vortices are quantized because phase of order parameter must rotate by 2π around a vortex. But triplet superconductors have a degree of freedom of spin, which is described by d-vector. The d-vector and phase can rotate by π around a vortex, separately. Therefore appearance of HQVs is predicted. Theoretically, it is found that a pair of HQVs is more stable than a singly quantized vortex, for several parameter regions.In this study, in order to investigate quasi-particle bound states around two vortices in s-wave superconductors, we have developed a new numerical method to solve the BdG equation for two vortices state, using Mathieu functions. We confirmed the validity of this method for two vortices state and applied it in case of a pair of vortices. And we solved it.  相似文献   

14.
By means of electrical transport measurements we have studied the rectified motion of vortices in ratchet potentials engineered on overdamped Josephson junction arrays. The rectified voltage as a function of the vortex density shows a maximum efficiency close a matching condition to the period of the ratchet potential indicating a collective vortex motion. Vortex current reversals were detected varying the driving force and vortex density revealing the influence of vortex-vortex interaction in the ratchet effect.  相似文献   

15.
Nonlinear response of Josephson vortex (JV) flow has been studied for controlling the JV motion. Rectification effect has been observed clearly with a biharmonic ac drive in the current–voltage measurements in the presence of pancake vortices. This method has a large advantage in changing the polarity of the rectified voltage with varying the phase- and the frequency-difference, compared to the spatially asymmetric nano-dots/anti-dots. Using a Bi2Sr2CaCu2O8+y single crystal, multiply-stacked Josephson junctions result us in obtaining a large gain. Further application of this method will be promising.  相似文献   

16.
Superconducting quantum interference devices (SQUIDs) are very well suited for experimental investigations of ratchet effects. This is due to the periodicity of the Josephson coupling energy with respect to the phase difference δ of the superconducting macroscopic wave function across a Josephson junction. We show first that, within the resistively and capacitively shunted junction model, the equation of motion for δ is equivalent to the motion of a particle in the so-called tilted washboard potential, and we derive the conditions which have to be satisfied to build a ratchet potential based on asymmetric dc SQUIDs. We then present results from numerical simulations and experimental investigations of dc SQUID ratchets with critical-current asymmetry under harmonic excitation (periodically rocking ratchets). We discuss the impact of important properties like damping or thermal noise on the operation of SQUID ratchets in various regimes, such as adiabatically slow or fast nonadiabatic excitation. Received: 22 November 2001 / Accepted: 14 January 2002 / Published online: 22 April 2002  相似文献   

17.
We elaborate on recent results on the transport of interacting particles for both single-species and binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we also briefly review motion control without any spatial asymmetric potential (i.e., no ratchet). Our results are obtained using an analytical approach based on a nonlinear Fokker-Planck equation as well as via numerical simulations. By increasing the particle density, the net dc ratchet current in our alternating (ac)-driven systems can either increase or decrease depending on the temperature, the drive amplitude, and the nature of the inter-particle interactions. This provides an effective control of particle motion by just changing the particle density. At low temperatures, attracting particles can condense at some potential minima, thus breaking the discrete translational symmetry of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either in a drop to zero or in a saturation of the net particle velocity at densities above the condensation density-the latter case producing a very efficient rectification mechanism. For binary mixtures we find three ways of controlling the particle motion of one (passive) B species by means of another (active) A species: (i) Dragging the target particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B particles on the asymmetric potential created by the A-B interactions, and (iii) dynamically modifying (pulsating) this potential by controlling the motion of the A particles. This allows to easily control the magnitude and direction of the velocity of the target particles by changing either the frequency, phase and/or amplitude of the applied ac drive(s).  相似文献   

18.
周兴旺  林丽烽  马洪  罗懋康 《物理学报》2014,63(16):160503-160503
研究了空时非对称分数阶类Langevin分子马达棘齿模型,其中势函数是空间对称破缺的周期势,时间非对称类Langevin噪声由Logistic映射生成,而分数阶则刻画了分子马达工作环境的非理想程度.通过将模型转化为离散映射,即研究其整时间点情形,数值模拟了噪声的时间非对称性、势函数的空间非对称性以及分数阶对模型定向输运行为的影响.数值模拟结果表明:噪声的时间非对称性是定向流产生的根源,而势函数的空间非对称性能够与其进行竞争与协作,并在适当的参数条件下导致定向流的逆转;分数阶仅影响定向流的大小而不改变其方向.与经典的整数阶分子马达模型或时间非对称分数阶分子马达棘齿模型相比,该模型可以更为真实地描述分子马达的噪声整流工作机理.  相似文献   

19.
We consider a system composed of many subsystems which are coupled to individual reservoirs at different temperatures. We show how the solution of a many-dimensional Fokker-Planck equation may be reduced to a Fokker-Planck equation of dimensionn, wheren is the number of relevant constants of motion. We treat also a Fokker-Planck equation with continuously many variables and the time-dependent one. The usefulness of the present procedure to determine explicitly distribution functions is exhibited by several examples. If all temperatures are equal the Boltzman distribution function is obtained as a special case. Using the method of quantum-classical correspondence, the distribution function for quantum systems may be found.  相似文献   

20.
We have measured the buckling, B1g, phonon mode of optimally doped, de-twinned, YBa2Cu3O7−δ using inelastic X-ray scattering (IXS) at BL35XU of SPring-8. Measurements of this mode, which has atomic motion transverse to the Cu-O planes, serve to demonstrate some of the advantages of the unique two-dimensional (2-D) analyzer array at BL35. Analysis based on fitting the entire spectra simultaneously at 10 and 100 K shows that the buckling mode is rather broad in the middle of the zone (near (0.3 0 0)). We see a consistent softening of the mode at 10 K as compared to 100 K for all measured wave-vectors (h 0 0), and a q-dependent softening as zone center is approached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号