首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
K. Tada  N. Karasawa   《Optics Communications》2009,282(19):3948-3952
Pulse trains of fundamental soliton pulses with different center wavelengths and delay times from a photonic crystal fiber were generated and used as Stokes optical pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy. The pulse trains were created by shaping optical pulses with a pulse shaper and their waveforms were measured by a cross-correlation frequency-resolved optical gating method. By the use of pulse trains, the time required for obtaining broadband CARS signals was reduced to be about one third compared with our previous study without using pulse trains. With this setup, broadband CARS signals between 500 and 3100 cm−1 of a single polystyrene bead sample have been measured and the most of the Raman peaks in this frequency range of samples have been observed clearly.  相似文献   

2.
3.
刘伟  陈丹妮  刘双龙  牛憨笨 《物理学报》2013,62(16):164202-164202
理论上提出一种突破衍射极限限制的相干反斯托克斯拉曼散射显微成像方法, 并对其探测极限进行分析.通过引入环形附加探测光与艾里斑周边的声子作用, 实现点扩展函数的改造, 提高相干反斯托克斯拉曼散射显微成像系统的横向空间分辨率. 随着分辨率的提高, 信号强度也随之降低, 尤其当应用于生物学、医学研究时, 样品分子数密度通常很低, 这将导致信号探测更加困难. 因此分析系统的探测极限, 确定超分辨体积元内的最小可探测分子数是展开超衍射极限相干反斯 托克斯拉曼散射显微成像实验研究的重要前提. 当泵浦光、斯托克斯光、探测光光强均达到极大值, 分辨率约40 nm三维空间内, 超衍射极限相干反斯托克斯拉曼散射显微成像系统的散粒噪声信噪比由曝 光时间与样品分子数密度决定. 曝光时间若取20 ms, 探测极限约为103, 样品分子数目只有大于探测极限, 才能保证信号可以从噪声背景中提取出来. 关键词: 突破衍射极限 相干反斯托克斯拉曼散射 非线性光学 探测极限  相似文献   

4.
We demonstrate a new approach to CARS spectroscopy by efficiently synthesizing synchronized narrow-bandwidth (less than 10 cm−1) pump and Stokes pulses (frequency difference continuously tunable upto ≈3000 cm−1) based on spectral compression together with second harmonic generation (in periodically-poled nonlinear crystals) of femtosecond pulses emitted by a single compact Er-fibre oscillator. For a far better signal to non-resonant background contrast, interferometric CARS (I-CARS) is demonstrated and CARS signal enhancement upto three orders of magnitude is achieved by constructive interference with an auxiliary local oscillator at anti-Stokes field, also synthesized by spectral compression of pulses emitted from the same fibre oscillator.  相似文献   

5.
To achieve high-spectral-resolution multiplex coherent anti-Stokes Raman scattering (CARS), one typically uses a narrowband pump pulse and a broadband Stokes pulse. This is to ensure a correspondence between anti-Stokes and vibrational frequencies. We obtain high-resolution CARS spectra of isopropanol, using a broadband chirped pump pulse and a broadband Stokes pulse, by detecting the anti-Stokes pulse with spectral interferometry. With the temporally resolved anti-Stokes signal, we can remove the chirp of the anti-Stokes pulse and restore high spectral resolution while also rejecting nonresonant scattering.  相似文献   

6.
We report all-UV coherent anti-Stokes Raman scattering (CARS) in calcite with 250-280 nm pump, Stokes, probe, and anti-Stokes light. UV CARS efficiency is approximately 7x higher than for comparable scattering in the visible, 480-540 nm. Time-resolved UV CARS reveals lengthening of the dephasing time of 1086 cm(-1) CO3(2-) internal vibrations from 4 to 7 ps with increasing vibrational excitation, consistent with a phonon depletion model.  相似文献   

7.
采用钛宝石飞秒激光器输出的一部分光抽运光子晶体光纤以产生超连续光谱,作为抽运光和斯托克斯光,另一部分飞秒激光作为探测光,并结合时间延迟方法,建立超连续光谱激发时间分辨相干反斯托克斯拉曼散射(CARS)实验系统,测试了具有较宽拉曼光谱的二甲基亚砜样品.实验结果表明,所建立的实验系统能有效抑制非共振背景噪声,并且通过一次测量,即可获得二甲基亚砜在690—3200cm-1范围内的CARS光谱信息,获得的二甲基亚砜CARS光谱范围达到2500cm-1.同时给出了所采用的光子晶体光纤光谱展宽的实验结果.  相似文献   

8.
Roy S  Meyer TR  Gord JR 《Optics letters》2005,30(23):3222-3224
Broadband picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitrogen is demonstrated using 145-ps pump and probe beams and a 115-ps Stokes beam with a spectral bandwidth of 5 nm. This is, to our knowledge, the first demonstration of broadband CARS using subnanosecond lasers. The short temporal envelope of the laser pulses and the broadband spectral nature of the Stokes beam will enable nonresonant-background-free, single-shot, or time-dependent spectroscopy in high-pressure or hydrocarbon-rich environments. Successful correlation of room-temperature broadband picosecond N2 CARS with a theoretical spectrum is presented.  相似文献   

9.
We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000 cm(-1) with a spectral resolution of approximately 25 cm(-1). We characterize the stability and robustness of CARS microspectroscopy employing this light source.  相似文献   

10.
张诗按  张晖  王祖赓  孙真荣 《中国物理 B》2010,19(4):43201-043201
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the $\pi $ spectral phase step.  相似文献   

11.
Coherent anti-Stokes Raman scattering (CARS) microspectroscopy of silicon components is demonstrated with pump and probe fields delivered by a mode-locked Cr:forsterite laser and the frequency-shifted soliton output of a photonic-crystal fiber as a Stokes field. CARS microspectroscopy is shown to allow a visualization of microscale features and defects on the surface of silicon wafers, offering much promise for online diagnostics of electronic and photonic silicon chip components.  相似文献   

12.
The time evolution of the anti-Stokes signal produced from the non-linear interaction of a short Stokes pulse and two long pump pulses that are nearly degenerate in frequency has been investigated. It is shown that this approach allows us to specify the accuracy of CARS (coherent anti-Stokes Raman scattering) velocimetry and to extend the range of operation of the method. In addition, an original optical scheme capable of delivering short visible pulses with good spatial and spectral properties is reported. The optical bench has been used for the characterisation of a low-pressure laminar Mach-10 flow. Received: 24 October 2001 / Revised version: 8 January 2002 / Published online: 14 March 2002  相似文献   

13.
Ganikhanov F  Evans CL  Saar BG  Xie XS 《Optics letters》2006,31(12):1872-1874
We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.  相似文献   

14.
Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.  相似文献   

15.
We study the effects related to two-photon absorption (TPA) in the microspectroscopy of the silicon photonic components based on coherent anti-Stokes Raman scattering (CARS) of femtosecond pulses. With 300-fs pulses of 1.24-μm Cr:forsterite laser radiation delivering pump and probe fields and a frequency-shifted soliton output of a large-mode area photonic-crystal fiber employed as a Stokes field, pronounced TPA effects have been observed in the CARS microspectroscopy of silicon components for pump-pulse intensities exceeding 10 GW/cm2.  相似文献   

16.
A novel method is presented which substantially improves the signal-to-background ratio for coherent anti-Stokes Raman scattering (CARS) microscopy. It exploits the fixed phase relation between pump, Stokes and CARS fields together with the strong phase coherence in supercontinua generated by femtosecond lasers. Three phase-locked optical parametric amplifiers are used for the realisation of heterodyne signal detection. Proper pulse timing yields a gating mechanism which nearly completely suppresses solvent background signals. PACS 42.65.Dr; 42.65.Hw; 42.65.Yj  相似文献   

17.
We demonstrate time-resolved coherent anti-Stokes Raman scattering (CARS) by using a frequency-tunable femtosecond soliton output of a silica photonic-crystal fiber (PCF) as a Stokes field. This approach allows quantum beats originating from two close Raman modes to be resolved in the time-domain CARS response. The nonresonant CARS background is efficiently suppressed by introducing a delay time between the probe pulse and the pump-Stokes pulse dyad, suggesting a convenient fiber-optic format for the Stokes source in time-resolved CARS and allowing sensitivity improvement in PCF-based CARS spectroscopes and microscopes.  相似文献   

18.
Liu J  Zhang J  Kobayashi T 《Optics letters》2008,33(13):1494-1496
As broad as 12000 cm(-1) coherent anti-Stokes Raman scattering (CARS) light from ultraviolet to infrared was generated in a BBO crystal by using two crossing femtosecond laser pulses with 30% conversion efficiency. More than fifteenth-order anti-Stokes and second-order Stokes Raman sidebands were observed with nice Gaussian spatial mode. The effect of the crossing angle between two input beams on the spectrum and emitting angle of the Raman sidebands was studied in detail. Calculation shows that the phase-matching condition determines the frequencies and angles of the sidebands.  相似文献   

19.
An analytical solution is obtained for equations of transient stimulated Raman scattering for short samples and a weak seed Stokes wave in the approximation of a given pump field, and a numerical solution for more extended media or more intense input Stokes pulses with allowance for pump depletion. The dependence of the anti-Stokes wave energy on its spatial mismatch with the Stokes and laser waves is studied. The optimum angle of the anti-Stokes generation is found as a function of the length of the system, transverse relaxation rate, laser pulse energy, and intensity ratio of the Stokes and pump pulses at the entrance of the sample.  相似文献   

20.
We report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号