首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We aim to explore the role that conduction band tail states play in shaping the optical response of hydrogenated amorphous silicon. We do so within the framework of an empirical model for the valence band and conduction band density of states functions, one that considers valence band band, valence band tail, conduction band band, and conduction band tail states. We examine the sensitivity of the joint density of states function to variations in the conduction band tail breadth, all other parameters being held fixed at their nominal hydrogenated amorphous silicon values. We find that when the conduction band tail is narrower than the valence band tail, its role in shaping the corresponding spectral dependence of the joint density of states function is relatively minor. This justifies the use of a simplified empirical model for the density of states functions that neglects the presence of the conduction band tail states in the characterization of the optical response of this material. Experimental data corresponding to hydrogenated amorphous silicon, demonstrating that the conduction band tail breadth is always less than the valence band tail breadth for this material, is then presented. Finally, fundamental reasons for the observed asymmetry in the band tail breadths are reviewed.  相似文献   

2.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

3.
Using an empirical model for the density of states functions associated with hydrogenated amorphous silicon, with defect states taken into account, we examine how the distributions of such states shape the optical response of this material. The contributions to this response attributable to the various types of optical transitions are also determined. Finally, we demonstrate that we are able to capture the spectral dependence of the optical absorption coefficient associated with a defect absorption influenced sample of hydrogenated amorphous silicon using our empirical formalism for the density of states functions associated with this material.  相似文献   

4.
Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.  相似文献   

5.
In this study, plasma polymerized 2, 6-diethylaniline (PPDEA) thin films of different thicknesses were synthesized using a glow discharge plasma polymerization method. Scanning electron microscopy showed that the surface morphology of an as-deposited PPDEA thin film was comparatively smooth after iodine doping. The iodine-doped PPDEA was found to be thermally stable up to ca about 560 K, which was slightly lower than that observed for as-deposited PPDEA. Ultraviolet-visible spectroscopic analyses demonstrated that iodine doping resulted in a significant decrease in the optical energy gap. As the doping period increased, the direct optical transition energy gap was reduced from 3.56 to 2.79 eV and the indirect optical transition energy gap was decreased from 2.23 to 1.97 eV. Thus it is observed that, the optical parameters of as-deposited PPDEA thin films with different thicknesses can be modified with different iodine doping periods.  相似文献   

6.
Observation of superconductivity in a single layer of Pb on the (111) surface of bulk silicon has renewed interest in a longstanding question; can superconductivity persist to the ultimate atomic limit? Using first-principles techniques, we investigate the total electron-phonon coupling in monolayer Pb supported by a Si(111) substrate. Our ultra-fine sampling of the electronic structure, lattice dynamics and electron-phonon matrix elements in the nearly two-dimensional Brillouin zone yields a total electron-phonon coupling parameter which explains the experimentally observed superconducting transition temperature of 1.83 K [T. Zhang, et al., Nat. Phys. 6 (2010) 104]. The observed suppression of the superconducting transition temperature from the bulk value of 7.2 K is found to arise from the interplay of reduced electron-phonon matrix elements and a modification of the lattice dynamics resulting from the Pb-Si bonding.  相似文献   

7.
Robinson et al. [J.W.A. Robinson, et al., Science 329 (2010) 59] reported control of spin-triplet supercurrents into ferromagnets by varying the thicknesses of the Ho injector and attributed the voltage peaks to non-integer spiral wavelengths of λ/2 and 5λ/2 in Ho. Here we demonstrate that these peaks correspond to λ/2 and 3λ/2.  相似文献   

8.
Amorphous and nanocrystalline germanium thin films were prepared on glass substrates by physical vapor deposition (PVD). The influence of thermal annealing on the characteristics of the Ge thin films has been investigated. X-ray diffraction (XRD) and SEM show amorphous structure of films deposited at room temperature. After thermal annealing, the crystallinity was improved when the annealing temperature increases. The Ge thin films annealed at different temperatures in air were nanocrystalline, having the face-centered cubic structure with preferred orientation along the 〈1 1 1〉 direction. The nanostructural parameters have been evaluated by using a single-order Voigt profile analysis. Moreover, the analysis of the optical transmission and reflection behavior was carried out. The values of direct and indirect band gap energies for amorphous and nanocrystalline phases are 0.86±0.02, 0.65±0.02 and 0.79±0.02, 0.61±0.02 eV, respectively. In addition, the complex optical functions for the wavelength range 600-2200 nm are reported. The refractive index of the nanocrystalline phase drops from 4.80±0.03 to 2.04±0.02, and amorphous phase changes from 5.18±0.03 to 2.42±0.02 for the whole wavelength range. The dielectric functions ε1 and ε2 of the deposited films were recorded as a function of wavelength within the range from 600 to 2200 nm.  相似文献   

9.
Exciton effects are studied in single-wall boron-nitride nanotubes. The Coulomb interaction dependence of the band gap, the optical gap, and the binding energy of excitons are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the on-site interaction U=2t with the hopping integral t=1.1 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of nanotubes. This novel property is in contrast with that of the carbon nanotubes, which show metallic and semiconducting properties depending on the chiralities.  相似文献   

10.

The effect of the dilution of silane and nitrogen with hydrogen on the optical properties of hydrogenated amorphous silicon-nitrogen films prepared by plasma deposition has been investigated as functions of the gas-volume ratio γ (= ([SiH4] + [N2])/([SiH4] + [N2] + [H2]) and the substrate temperature. The prepared films are characterized by the values of the deposition rate, the optical gap, the Urbach energy, the defect density, the integrated infrared absorption intensity and the refractive index, and by correlations between these parameters and the type of hydrogen- and nitrogen-bonding configurations estimated from infrared absorption spectra. The hydrogen dilution effect is discussed in terms of the above and compared with that in hydrogenated amorphous silicon reported in a previous paper by the present authors. It is pointed out that nitrogen atoms incorporated into the silicon network cause more disorder than incorporated hydrogen atoms, from the γ dependence of the Urbach energy and the integrated infrared intensities associated with the hydrogen and nitrogen bondings.  相似文献   

11.
Semiconductor molecular-material thin films of [6,13-Ac2-5,14-Me2-[14]-4,6,11,13-tetraenato-1,4,8,11-N4] and the bidentate amines 1,4-diaminebutane, 1,12-diaminedodecane and 2,6-diamineanthraquinone have been prepared by vacuum thermal evaporation on corning glass substrates and crystalline silicon wafers. The films thus obtained were characterized by infrared (FTIR), ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectroscopies. The surface morphology, thickness and structure of these films were analyzed by atomic force microscopy (AFM), ellipsometry and X-ray diffraction (XRD), respectively. IR spectroscopy showed that the molecular-material thin films exhibit the same intra-molecular bonds as the original compounds, which suggests that the thermal evaporation process does not significantly alter their bonds. The effect of temperature on conductivity was also measured in these samples; it was found that the temperature-dependent electric current is always higher for the voluminous amines with large molecular weights and suggests a semiconductor behavior with conductivities in the order of 10−6-10−1 Ω−1 cm−1. Finally, the optical band gap (Eg) and cubic χ(3) non-linear optical (NLO) properties of these amorphous molecular complexes were also evaluated from optical absorption and optical third harmonic generation (THG) measurements, respectively.  相似文献   

12.
Semiconducting molecular materials based on aluminum phthalocyanine chloride (AlPcCl) and bidentate amines have been successfully used to prepare thin films by using a thermal evaporation technique. The morphology of the deposited films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Studies of the optical properties were carried out on films deposited onto quartz and (1 0 0) monocrystalline silicon wafers and films annealed after deposition. The absorption spectra recorded in the UV–vis region for the as-deposited and annealed samples showed two absorption bands, namely the Q- and B-bands. In addition, an energy doublet in the absorption spectra of the monoclinic form at 1.81 and 1.99 eV was observed. A band-model theory was employed in order to determine the optical parameters. The fundamental energy gap (direct transitions) was determined to be within the 2.47–2.59 and 2.24–2.44 eV ranges, respectively, for the as-deposited and annealed thin films.  相似文献   

13.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

14.
The energy modes for a photonic nanowire have been studied and calculated. We model our photonic crystals after Noda et al. (1999) [18] where logs of semiconductor material are stacked to produce photonic band gaps in both the near and far infrared regions. A nominal dispersion relation was adopted in order to achieve qualitatively useful results. Photonic wires were modeled in two schemes, each with two specific geometries. In the first scheme, a pillar of one photonic crystal is embedded in a larger photonic crystal to produce a wire. This pillar was modeled as having either a square or a circular cross-section. The photonic crystals considered consisted of varying proportions of GaxAl1−xAs, so that the wire could be adjusted. The second scheme investigated was a dielectric material for the central pillar, rather than a photonic crystal. Again, circular and square cross sections were considered. It was found that many more modes fit into the near infrared band gap than the far infrared band gap, and that a circular cross-section permits fewer modes. Finally, a dielectric pillar allows for a wire which is physically much smaller than a wire with a photonic crystal in the middle. As many photonic devices include such wires, these qualitative results could be useful in their design.  相似文献   

15.
First principle calculations based on density functional theory using GW approximation and two particle Bethe–Salpeter equation with electron-hole effect were performed to investigate electronic structure and optical properties of two-layered hydrogenated AlN. According to many body green function due to decrease in dimension and considering electron-electron effect, direct (indirect) band gap change from 2 (1.01) eV to 4.83 (3.62) eV. The first peak in imaginary part of dielectric function was observed in parallel direction to a plane obtaining 3.4 was achieved by bound exciton states possess 1.39 eV. The first absorption peak was seen in two parallel and perpendicular directions to a plane which are in UV region.  相似文献   

16.
I refute the criticisms of Srivastava et al. (2008) [13] raised in Bénédicto et al. [14].  相似文献   

17.
18.
A systematic series of (Ge15Ga10Te75)1−x(CsI)x (x=0, 5, 10, 15 at%) far infrared transmitting chalcohalide glasses were prepared by the traditional melt-quenching method. The physical, thermal and optical properties were determined. The allowed direct transition and indirect transition of samples were calculated according to the Tauc equation. The results show that glass transition temperatures (Tg) were in the range 133-175 °C, with ΔT values between 81 and 130 °C. The highest values of metallization criterion (0.244) and energy gap (1.191 eV) were obtained for (Ge15Ga10Te75)85(CsI)15. When the dissolved amount of CsI increased from 0 to 15 at%, the direct optical band gap and indirect optical band gap were in the ranges 0.629-1.075 eV and 0.438-0.524 eV, respectively. The Ge-Ga-Te-CsI glasses have an effective transmission window between 1.7 and 25 μm, encompassing the region of interest for bio-sensing applications.  相似文献   

19.
EuAlO3 (EAO) is synthesized by the sol–gel process. The Rietveld refinement of the X-ray diffraction data shows that the material has orthorhombic structure with Pbnm space group. The density functional theory calculations are initiated with the experimental lattice parameters. The full potential linearized augmented plane wave method and projector augmented wave method are used to investigate the ground state properties of EAO. An indirect band gap of 1.8 eV is observed with the valence band maximum at the Γ point and the conduction band minimum at the R point. The X-ray photoemission spectroscopy (XPS) spectra of EAO are obtained in the energy window of 0–1000 eV. Using the electronic density of states, the valence band (VB) spectrum of EAO is generated and compared with the observed VB-XPS spectrum. The optical dielectric constant and the refractive index of the material are calculated for the photon energy radiation. The optical properties show a considerable anisotropy in the material. The Born effective charge of various elements and the dielectric tensor of EAO have been calculated.  相似文献   

20.
In this work, we study the changes in the optical properties of 300-nm-thick hydrogenated amorphous silicon carbide layers after an annealing process. Both intrinsic and phosphorus-doped amorphous silicon carbide layers (a-SiCx:H) were deposited on silicon wafers by plasma enhanced chemical vapour deposition (PECVD) at 400 °C and annealed in a quartz furnace at 800 °C. The presence of randomly oriented silicon nanocrystals was confirmed by X-ray diffraction (XRD) measurements after the partial recrystallization process only in the doped layers. The presence or the absence of the nanocrystals clearly changes the Fourier transform infrared (FTIR) spectra. From the fitting of the experimental curves with the model of Lorentz oscillators, the refractive index and the extinction coefficient of the different layers were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号