首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the n=4 Aurivillius oxide BaBi4Ti4O15 has been studied at room temperature using powder neutron diffraction, and from 300 to 1000 K using synchrotron X-ray diffraction methods. The structure is orthorhombic (space group A21am) at 300 K and transforms to a tetragonal (I4/mmm) structure near 700 K.  相似文献   

2.
The structure of the ordered double perovskite Ba2CuUO6 has been investigated between room temperature and 800 °C using synchrotron X-ray powder diffraction. At room temperature Ba2CuUO6 is tetragonal, space group I4/m, a=8.82331(13) c=8.82330(13) Å, the structure being characterized by a large Jahn-Teller distortion of the CuO6 octahedra and small out-of-phase tilts of the BO6 octahedra. This Jahn-Teller distortion is also evident in the UV-Vis spectra. Analysis of the spontaneous tetragonal strain reveals a continuous ferroelastic phase transition near 420 °C. This appears to be related to the loss of the tilts whilst maintaining the Jahn-Teller distortion, so that the high temperature structure is in space group I4/mmm.  相似文献   

3.
In a temperature dependent neutron powder diffraction (NPD) study we observed the high temperature cubic phase at 973 K in the polycrystalline double perovskite Sr2MnWO6. Rietveld analysis of the NPD data shows that the room temperature tetragonal phase exists up to 573 K (space group P42/n, a=8.0119 (4) Å, c=8.0141(8) Å). At 773 K, the primitive tetragonal symmetry change to body-centred tetragonal (space group I4/m, a=5.6935(5) Å, c=8.077(1) Å) and finally at 973 K it becomes face-centred cubic (space group Fm-3m, a=8.0864(8) Å). The changes in the structural symmetry are connected to the small distortion of the B-site octahedra, which are insensitive to the Differential Thermal Analysis (DTA) signal.  相似文献   

4.
The results of the ab initio FLAPW-GGA computations of the band structure of the recently synthesized layered tetragonal (space group I4/mmm) arsenide (Sr3Sc2O5)Fe2As2 as a possible basis phase of a new group of FeAs superconductors are presented. For (Sr3Sc2O5)Fe2As2, the energy bands, electron state density distributions, Fermi surface topology, low-temperature electron specific heat, molar Pauli paramagnetic susceptibility, and effective atomic charges have been determined. These results are discussed compared to similar data for the layered tetragonal crystals LaFeAsO, SrFeAsF, SrFe2As2, and LiFeAs that are the basis phases of the recently discovered high-temperature (T C ~ 26–56 K) 《1111》, 《122》, and 《111》 FeAs superconductors.  相似文献   

5.
Crystallographic and magnetic properties of PrMn2Si2, NdMn2Si2, YMn2Si2 and YMn2Ge2 intermetallics were studied by X-ray, neutron diffraction and magnetometric measurements. The crystal structure of all four compounds was confirmed to be body-centered tetragonal (space group I4/mmm). All were found to be antiferromagnetic with Néel points at 368, 380, 460 and 395 K respectively. Neutron diffraction results indicate that their magnetic structure consists of ferromagnetic layers composed of Mn ions piled up along the c-axis. Each layer is antiferromagnetically coupled to adjacent layer. The magnetic space group is Ip4/mmm′. No magnetic ordering of the R sublattice was observed at 1.8 K in the case of R = Pr and Nd.  相似文献   

6.
YMn12 crystallizes in the I4/mmm tetragonal body-centred structure. Neutron diffraction experiments give evidence for an antiferromagnetic structure (TN = 120 K) in the tetragonal cell. The magnetic structure has been determined with the help of group theory. The mean Mn magnetic moment is 0.4μB. In spite of the non-colinear arrangement of magnetic moments strong negative anisotropic interactions are evidenced. As it is observed in pure Mn and in rare earth-Fe compounds, these interactions are strongly distance dependent.  相似文献   

7.
A new high-pressure tetragonal phase (B10) of ZnO is investigated with an ab initio calculation based on density functional theory and is compared with the cubic B1 (rocksalt structure) and B2 (CsCl structure) phases at high pressure. It is found that the B10 phase has a more covalent nature than the B2 phase. The B1, B2, and B10 phases are semiconductors and their band gap energies are determined to be 3.73, 3.15, and 3.27 eV, respectively. The B10 phase has a similar optical response to the B2 phase, but not the B1 phase. The similarity of dielectric function between B10 and B2 phases are the result of the similar profiles of electronic density of state.  相似文献   

8.
The phase transition of ZnS from the zincblende (ZB) structure to the rocksalt (RS) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the ZB structure to the RS structure are 17.5 GPa from total energy-volume data and 15.4 GPa from equal enthalpies, consistent with the experimental data. From the high pressure elastic constants obtained, we find that the ZB structure ZnS is unstable when the applied pressure is larger than 17 GPa. Moreover, the dependence of the normalized primitive cell volume V/V0 on pressure P can also be successfully obtained.  相似文献   

9.
The chemical bonding, elastic behavior, phase stability, and hardness of OsB, OsB2, OsC, OsO2, OsN, and OsN2 have been systematically studied using first-principles calculations. The calculation suggests that the chemical bonding in these compounds is a mixture of covalent and ionic components. The structural stability of OsB, OsC, and OsN can be understood in terms of the band filling of the bonding states, and the results indicate that the hexagonal tungsten carbide structure is more stable. The hardness of these osmium compounds is calculated using both ab initio and semiempirical model calculations. Analysis of the ab initio hardness suggested that the large occupations and high strength of the covalent bonds are crucial for a superhard material, and there is no clear connection between bulk modulus and hardness in these osmium compounds.  相似文献   

10.
The transition phase of PtN from zincblende (ZB) structure to rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The transition phase from the ZB structure to the RS structure occurs at the pressure of 18.2 GPa, which agrees well with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, together with the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

11.
We report results of first-principles total-energy calculations for structural properties of the group I-VII silver iodide (AgI) semiconductor compound under pressure for B1 (rocksalt), B2 (cesium chloride), B3 (zinc-blende) and B4 (wurtzite) structures. Calculations have been performed using all-electron full-potential linearized augmented plane wave plus local orbitals FP-LAPW + lo method based on density-functional theory (DFT) and using generalised gradient approximation (GGA) for the purpose of exchange correlation energy functional. In agreement with experimental and earlier ab initio calculations, we find that the B3 phase is slightly lower in energy than the B4 phase, and it transforms to B1 structure at 4.19 GPa. Moreover, we found AgI has direct gap in B3 structure with a band gap of 1.378 eV and indirect band gap in B1 phase with a bandgap around 0.710 eV. We also present results of the effective masses for the electrons in the conduction band (CB) and the holes in the valence band (VB). To complete the fundamental characteristics of this compound we have analyzed their linear optical properties such as the dynamic dielectric function and energy loss function for a wide range of 0-25 eV.  相似文献   

12.
The influence of Rh doping on the structure of Sr2RuO4 has been investigated using neutron powder diffraction methods. The metallic Ru rich compounds adopt a regular K2NiF4-type structure, space group I4/mmm, with Ru-O-Ru bond angles of 180°. The structures of the nonmetallic Rh rich compounds crystallise in space group I4/acd and are characterised by tilting of the MO6 octahedra reducing the Ru-O-Ru angle to about 160°. Irrespective of Rh content the MO6 polyhedra are not regular octahedra but are elongated along the c direction. The temperature dependence of the structure of Sr2Ru0.9Rh0.1O4 was investigated and revealed this elongation to be weakly temperature dependent.  相似文献   

13.
The static and dynamic properties of cubic Rb2KInF6 crystals with elpasolite structure are calculated using a nonempirical method. Calculations are performed within a microscopic ionic-crystal model taking into account the deformation and polarization of ions. The deformation parameters of ions are determined by minimizing the total energy of the crystal. The calculated equilibrium lattice parameters agree satisfactorily with the experimental data. It is found that in the cubic phase there are vibrational modes that are unstable everywhere in the Brillouin zone. The eigenvectors of the unstablest mode at the center of the Brillouin zone of the cubic phase are associated with the displacements of F ions and correspond to rotations of InF6 octahedra. Condensation of this mode leads to a tetragonal distortion of the structure. In order to describe the Fm3mI4/m phase transition, an effective Hamiltonian is constructed under the assumption that the soft mode whose eigenvector corresponds to octahedron rotation is local and coupled with homogeneous elastic strains. The parameters of the effective Hamiltonian are determined using the calculated crystal energy for the distorted structures due to soft-mode condensation. The thermodynamic properties of the system with this model Hamiltonian are investigated using the Monte Carlo method. The phase transition temperature is calculated to be 550 K, which is twice its experimental value (283 K). The tetragonal phase remains stable down to T=0 K; the effective Hamiltonian used in this paper thus fails to describe the second phase transition (to the monoclinic phase). Thus, the transition to the tetragonal phase occurs for the most part through octahedron rotations; however, additional degrees of freedom, first of all, the displacements of Rb ions, should be included into the effective Hamiltonian in order to describe the transition to the monoclinic phase.  相似文献   

14.
The high-pressure phase transition of CS2 was studied by combing ab initio molecular dynamics with total energy calculations. At 300 K the pieces of polymer structure were found to appear at 10 GPa in the molecular dynamics run, and further the CS4 tetrahedral structure to appear at about 20 GPa. The phase transition was then studied in the structure of Cmca, α-quartz and β-quartz by using the first-principle total energy calculation method. A phase transition from Cmca to β-quartz was found at 10.6 GPa. The calculated lattice constants of β-quartz at atmospheric pressure are a=5.44 and c/a=1.138 with B0=95 GPa. The calculation has also indicated that CS2 decomposes at 20 GPa and below 1000 K.  相似文献   

15.
The magnetic properties and crystal structure of the Pr0.5Sr0.5Co0.5Fe0.5O3 compound are studied by neutron and x-ray diffractions using synchrotron radiation. These measurements show that this compound is a dielectric spin glass with a magnetic moment freezing temperature of about 70 K. As temperature decreases in the range 30–95 K, a structure phase transition of the first order occurs with an increase in the symmetry from orthorhombic (space group Imma) to tetragonal (space group I4/mcm). It is assumed that the transition is caused by a change in the 4f electron configuration of the Pr3+ ions.  相似文献   

16.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

17.
To obtain a rigorous definition of the chemical bonds in binary transition-metal aluminides, topological analyses were performed for VAl3 and TiAl3 in the D022 and L12 structures. The analyses were based on the valence charge densities calculated with the ab initio density functional theory. To better understand the formation mechanism of the pseudogap in these compounds, the band structure, the density of states (DOS) and the band decomposed charge density (BDCD) were calculated. The topological analyses reveal that the interactions between the (V, Ti) and Al atoms are all pure shared-shell interactions, the bonds are covalent and clearly have π-bond character. The study of the band structure, DOS and BDCD shows that the formation of the pseudogap is due to the crystal field energy splitting of the (V, Ti)-3d orbitals combined with the inter-unit-cell orbital interaction.  相似文献   

18.
The atom-vacancy ordering of cubic vanadium monoxide VO1.29, which has basis cubic structure B1 and structural vacancies in the metal sublattice, has been studied using the x-ray diffraction method. It has been shown that the formation of the tetragonal (space group I41/amd) ordered phase V52O64 of cubic vanadium monoxide VOy proceeds as a first-order phase transition through the disorder-order channel including 22 nonequivalent superstructure vectors of four stars {k 10}, {k 4}, {k 3}, and {k 2}. The distribution function of the vanadium atoms in the V52O64 tetragonal superstructure has been calculated.  相似文献   

19.
The rotational spectra of two conformers of ethyl pivalate, (CH3)3C-COO-C2H5 have been recorded by molecular beam FT microwave spectroscopy. The analysis yielded a set of three rotational constants and five quartic centrifugal distortion constants for each conformer. The conformers were identified by comparing the experimental rotational constants with those obtained by ab initio calculations at MP2/6-311++G∗∗ level. One conformer has Cs symmetry, the other one forms a pair of enantiomers with C1 symmetry. Additionally, the torsional potentials of the tert-butyl group and of the methyl groups were obtained by ab initio methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号