首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A detailed investigation has been made into the antiaromaticity and chemical reactivity of a planar cyclooctatetraene (COT) molecule fully annelated with bicyclo[2.1.1]hexane units 2. In spite of its planar 8pi-electronic structure, theoretical calculations have indicated that the antiaromaticity of COT 2 is considerably decreased in comparison with a planar COT 16 with D 4h symmetry. This behavior appears to be related to the wider HOMO-LUMO gap of 2 relative to 16, which is caused by the raised LUMO level as a result of the effective sigma-pi* orbital interaction between the strained bicyclic framework and the COT pi system. The two-electron reduction of 2 required the use of potassium mirror or a combination of lithium/corannulene in highly dried [D8]THF at -78 degrees C under vacuum. In contrast, the [4+2] cycloaddition of 2 with tetracyanoethylene (TCNE) proceeded quite smoothly owing to the high-lying HOMO. Reaction of 2 with meta-chloroperbenzoic acid gave all-trans tetraepoxide 23 in the same way as the corresponding benzene derivative 3. While the Simons-Smith-type cyclopropanation of benzene 3 gave tricyclopropanated derivative 21, the reaction of 2 only afforded isomers of dicyclopropanated derivatives 25 and 26. Yet, the reactivity of 2 is higher than the parent COT, which does not show any reactivity under the same conditions. On the basis of homodesmic reactions, it was concluded that release of strain is also an important factor for such relatively high reactivity in the epoxidation and cyclopropanation of bicycloannelated COT 2 as well as benzene 3.  相似文献   

2.
Bowl-shaped mono- and dianions are prepared by reduction of corannulene (C(20)H(10), 1) with sodium and potassium metals in the presence of [18]crown-6 ether. Single-crystal X-ray diffraction studies of two sodium salts, [Na(THF)(2)([18]crown-6)](+)[1(-)] (2a) and [Na([18]crown-6)](+)[1(-)] (2b), reveal the presence of naked corannulene monoanions 1(-) in both cases. In contrast, the potassium adduct, [K([18]crown-6)](+)[1(-)] (3), shows an η(2)-binding of the K(+) ion to the convex face of 1(-). For the first time, corannulene dianions have been isolated as salts with sodium, [Na(2)([18]crown-6)](2+)[1(2-)] (4a) and [Na(THF)(2)([18]crown-6)](+)[Na([18]crown-6)](+)[1(2-)] (4b), and potassium counterions, [K([18]crown-6)](2)(+)[1(2-)] (5). Their structural characterization reveals geometry perturbations upon addition of two electrons to a bowl-shaped polyarene. It also demonstrates η(5)- or η(6)-binding of metals to the curved carbon surface of 1(2-), depending on the crystallization conditions. Both mono- and doubly-charged corannulene bowls show the preferential exo binding of Na(+) and K(+) ions in all investigated compounds. Various types of C-H···π interactions are found in the crystals of 2-5. The UV/Vis, ESR, and (1)H NMR spectroscopic studies of 2-5 indicate different coordination environment of corannulene anions in solution, depending on the metal ion.  相似文献   

3.
Two-electron reduction of penta(organo)[60]fullerenes C(60)Ar(5)H (Ar = Ph and biphenyl) by potassium/mercury amalgam afforded potassium complexes of the corresponding open-shell radical dianions [K+(thf)n]2[C60Ar5(2-.)]. These compounds were characterized by UV-visible-near-IR and electron spin resonance spectroscopy in solution. Anaerobic crystallization of [K+(thf)n]2[C60(biphenyl)(5)(2-.)] that exists largely as a monomer in solution gave black crystals of its dimer [K+(thf)3]4[(biphenyl)5C60-C60(biphenyl)5(4-)], in which the two fullerene units are connected by a C-C single bond [1.577(11) A] as determined by X-ray diffraction. Three-electron reduction of C60Ar5H with metallic potassium gave a black-green trianion [K+(thf)n]3[C60Ar5(3-)]. The reaction of the trianion with an alkyl halide RBr (R = PhCH(2) and Ph(2)CH) regioselectively afforded a hepta-organofullerene C60Ar5R2H, from which a potassium complex [K+(thf)n][C60(biphenyl)5(CH2Ph)(2)(-)] and a palladium complex Pd[C60(biphenyl)5(CH2Ph)2](pi-methallyl) as well as octa-organofullerene compounds C60(biphenyl)5(CH2Ph)3H2 and Ru[C60(biphenyl)5(C2Ph)3H]Cp were synthesized. These compounds possess a dibenzo-fused corannulene pi-electron conjugated system and are luminescent.  相似文献   

4.
Tetraanions of alkyl-substituted derivatives of cycloocta[1,2,3,4-def;5,6,7,8-d'e'f']bisbiphenylene (BPD) and their counter lithium cations self-assemble to form helically stacked assemblies, including a dimer, a trimer, and a tetramer. NMR self-diffusion measurements and unprecedented magnetic shielding effects for the sandwiched lithium cations support their aggregated nature. The D(2)-tetramer assembly is fully characterized by NMR spectroscopy, providing unequivocal evidence for a helix of four tetraanionic BPD layers with an estimated relative twist angle of about 45 degrees and interlayer spacing of ca. 4 A. The barrier for racemization through the in-plane inter-deck rotation is DeltaG(200)= 9.5 +/- 0.2 kcal mol(-1) in the dimer compared to >15 kcal mol(-1) in the tetramer.  相似文献   

5.
Upon reaction of 4-oxo-5-hydroxiinirto-4,5,6,7-tetrahydrobenzofurazan and -tetrahydrobenzofuroxan with enamines, derivatives of N-oxides of tetrahydropyrrolo[2,3-e]benzofitrazan are fonned. Upon action of acids on these compounds, we observe formation of derivatives of indole and 1-hydroxyindole, annelated with the furazan and furoxan rings.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 199–208, February, 1994. Original article submitted February 15, 1994.  相似文献   

6.
The Diels–Alder reactivity of different bowl‐shaped polycyclic aromatic hydrocarbons (namely, corannulene, cyclopentacorannulene, diindenochrysene, hemifullerene, and circumtrindene) has been explored computationally within the DFT framework. To this end, both the increase in reactivity with the size of the buckybowl and complete [6,6]‐regioselectivity in the process have been analyzed in detail by using the activation strain model of reactivity in combination with the energy decomposition analysis method. These results have been compared with the parent C60 fullerene, which also produces the corresponding [6,6]‐cycloadduct exclusively. The behavior of the buckybowls considered herein resembles, in general, that of C60. Whereas the interaction energy between the deformed reactants along the reaction coordinate mainly controls the regioselectivity of the process, it is the interplay between the activation strain energy and the transition‐state interaction that governs the reactivity of the system.  相似文献   

7.
The synthesis and antiviral evaluation of 6-amino- and 6-chloro-9-(exo-bicyclo[2.2.1]hept-2yl)-9H-purine derivatives with thiophene and tetrahydrothiophenes annelated to a norbornane moiety are described. The key step in the synthesis of derivatives with the symmetrically annelated thiophene was the Mitsunobu reaction of endo-4-thiatricyclo[5.2.1.02,6]deca-2,5-dien-8-ol with 6-chloropurine. The key alcohol was obtained by DDQ mediated aromatization of the corresponding tetrahydro derivatives, which were used for the preparation of the target tetrahydrothieno analogs. The key intermediate for the synthesis of derivatives with the asymmetrically annelated thiophene was 8-exo-azido-3-thiatricyclo[5.2.1.02,6]deca-2(6),4-diene, which was prepared from 5-exo-azido[2.2.1]heptan-2-one by aldol condensation with O-ethyl S-(2-oxoethyl) carbonodithioate, deprotection and cyclization. The target compounds were obtained by the construction of the purine base on an amine, which was obtained by LAH reduction of the key azide. The synthesized compounds were evaluated for antiviral and cytostatic activity.  相似文献   

8.
Lee HS  Niemeyer M 《Inorganic chemistry》2006,45(16):6126-6128
Higher aggregated alkali-metal compounds are usually obtained with increasing radius of the metal. Alkali-metal salts derived from the sterically crowded triazenido ligand Tph2N3H [Tph = C6H3-2,6-(C6H2-2,4,6-iPr3)2] do not obey this principle. Interestingly, these compounds show inverse aggregation behavior in the solid state: the potassium and cesium salts crystallize as discrete monomers in which the cations interact with flanking arene rings of the diaryltriazenido ligands, whereas the lithium derivative is dimeric with a more conventional heteroatom-bridged structure.  相似文献   

9.
Stable radical cations of dimeric amino acid derivatives of tryptophan and tyrosine were generated by collision-induced dissociation of [Cu(II)(diethylenetriamine)(amino acid derivative)2]*2+. The yields of the dimer radical cations were dependent on both the auxiliary ligand and the tryptophan or tyrosine derivatives used. Amino acid derivatives with an unmodified carboxylic acid group did not generate dimer radical cations. For the amino acid derivatives Ac-Trp-OMe and Ac-Trp-NH2 (Ac is N-acetyl; OMe and NH2 are the methyl ester and amide modifications of the C-terminal carboxylic group), no auxiliary ligand was required for generating the dimer radical cations. Collision-induced dissociation of the [Cu(II)(amino acid derivative)4]*2+ precursor generated the dimer radical cation [(amino acid derivative)2]*+. Stabilizing interactions, most likely involving hydrogen bonding, between the two amino acid derivatives are proposed to account for observation of the dimer radical cations. Dissociation of these ions yields protonated or radical cationic amino acid derivatives; these observations are consistent with the expectation of proton competition between monomeric units, whose proton affinities were calculated using density functional theory.  相似文献   

10.
Mixed-valence (MV) dimers have been extensively investigated, however, the structure and properties of purely organic MV trimers based on open-shell polycyclic aromatic hydrocarbons remain elusive. Herein, unprecedented MV BN-doped corannulene radical cations [ BN-Cor1 ]3⋅⋅2+ ⋅ 2[BArylF4] and [ BN-Cor2 ]3⋅⋅2+ ⋅ 2[BArylF4] were synthesized via chemical oxidation, and their structures were unambiguously confirmed by single-crystal X-ray diffraction. These uncommon radical cations consist of three corannulene cores and two [BArylF4] anions, and three corannulene motifs [ BN-Cor1 ]3⋅⋅2+ and [ BN-Cor2 ]3⋅⋅2+ in the unit cell exhibit a trimer structure with a slipped π-stacking configuration. Detailed structural analyses further revealed that the corannulene cores exhibit an infinite layered self-assembly configuration, allowing their potential applications as building blocks for molecular conductors. The detection of a forbidden transition (Δms=±2) by electron paramagnetic resonance (EPR) spectroscopy further confirmed the existence of two unpaired electrons in the π-trimers and the MV characteristic of these two species. Variable-temperature EPR and conductivity measurements suggested that the BN-doped π-trimers exhibited antiferromagnetic coupling and conductivity properties.  相似文献   

11.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

12.
Lithium (2a), sodium (2b), and potassium (2c) salts of 1-methyl-3,5-diphenyl-4-methylamino-1,2,4-triaza-3,5-diborolyl were prepared by deprotonation of the ring nitrogen in neutral precursor 1. The alkali metal derivatives were characterized by multinuclear NMR, mass spectrometry, and single-crystal X-ray diffraction. The structural determinations revealed extended 2D structures for 2a and 2b and an extended 1D structure for 2c. All three solvent-free structures are dominated by sigma interactions, and pi interactions are also present for the potassium derivative. Addition of triphenylborane to 2a, 2b, and 2c produced the adducts 3a, 3b, and 3c, respectively, and these were characterized by multinuclear NMR and mass spectrometry. Structural determinations have been performed for the lithium and potassium salt, showing that Ph3B coordinates at the 2 position of the ring, whereas the alkali metal is coordinated by the pendant methylamino group. The lithium ion is additionally coordinated by three acetonitrile molecules in the monomeric structure of 3a, whereas the potassium ion is coordinated by three phenyl groups, forming the 1D polymeric structure of 3c. Reaction of 2a with [Rh(cod)Cl]2 yielded the dimeric 4, containing two 1,2,4-triaza-3,5-diborolyl rings bridging two Rh(cod) fragments through the substituent-free ring nitrogen atoms.  相似文献   

13.
Crystal structures and magnetic properties were determined for two novel polymorphs of the complex [H2DABCO][Ni(mnt)2] [(H2DABCO)2+ = diprotonated 1,4-diazabicyclo[2.2.2]octane; mnt2- = maleonitriledithiolate]. For each polymorph, anions form a layered structure in which two kinds of dimers were observed. The adjacent anionic sheets are held together by cations via H-bonding interactions between protons of cations and CN groups of anions. Two polymorphs possess spin bistability; namely, upon cooling, a magnetic transition happens at around 120 K with about 1 K hysteresis on heating for the alpha phase and at 112 K with about 10 K hysteresis for the beta phase. Above the transition, the magnetic behaviors of two polymorphs can be approximately interpreted by a singlet-triplet model of an antiferromagnetically coupled S = 1/2 dimer, which is supported by the crystal structures and spin dimer analyses based on extended Hückel molecular orbital calculations.  相似文献   

14.
A series of viologen derivatives were synthesised, which can form stable 1:1 inclusion complexes with cucurbit[8]uril (CB[8]) in aqueous solution. The one-electron-reduced viologen radical cations and its dimerisation encapsulated into CB[8] were studied spectroscopically. The monomer–dimer dynamic balance would exist in the molecules containing O-atom, while the molecules without O-atom retain the form of radical monomer in CB[8] cavity. The result demonstrated that the dynamic balance of radical monomer and dimer of these complexes can be modulated by CB[8].  相似文献   

15.
MALDI mass spectrometry is used for the first time for the rapid assessment of the binding of thiacalix[4]arene-monocrown-ethers with metal cations (Li, Na, K, Cs, Cu, Ag). The work is performed on examples of thiacalix[4]arene-monocrown-ethers in 1,3-alternate conformation with various numbers (m) of ethylene oxide units and various substituents in phenol groups. It is shown that thiacalix[4]arene-monocrown- ethers with m = 3, 4, 5, and 6 bind lithium, sodium, potassium, and cesium cations, respectively; in addition, the binding of cesium cations is stronger in the presence of aromatic substituents in the lower rim of thiacalix[4]arene-monocrown-ethers. Silver cations bind with calixarenes under study more intensely than copper ions. When aromatic substituents are present, the binding of silver cations is stronger than that of alkali metal ions with the studied thiacalix[4]arene-monocrown-ethers.  相似文献   

16.
The gas-phase lithium cation basicities (LCBs) of naphthalene, azulene, anthracene, and phenanthrene were measured by means of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of the corresponding complexes and their relative stabilities were investigated at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level of theory. In the theoretical survey, pyrene, coronene, [3]phenylene, angular [3]phenylene, and circumcoronene were also included. The strength of the binding to a given aromatic cycle decreases as the number of cycles directly fused to it increases. Hence, the stability of the outer pi-complexes, in which Li(+) is attached to the peripheral rings, is systematically greater than that of the complexes in which the metal is attached to the inner rings. The energy gap between these local minima decreases as the number of fused rings in the system increases. This result seems to indicate that, as the size of the system increases, the rings tend to lose their peculiarities, in such a way that in the limit of a graphite sheet all rings would exhibit identical characteristics and reactivity. The good agreement between calculated LCBs and experimental values lends support to the enhanced stability of the outer complexes. The activation barriers connecting these local minima decrease as the number of fused cycles increases, but seems to tend toward a limit. [3]Phenylene and angular [3]phenylene exhibit enhanced LCBs reflecting nonnegligible Mills-Nixon effects that increase the electron-donor properties of these annelated benzenes.  相似文献   

17.
Selective penta-addition of a methylcopper reagent followed by addition of a phenylcopper reagent to a suitably modified synthetic intermediate results in creation of 40pi-electron systems-hoop- and bowl-shaped cyclic benzenoid compounds, [10]cyclophenacene, and dibenzo-fused corannulene derivatives. The 40pi-electron cyclophenacene derivatives have been found to be chemically stable, yellow-colored, luminescent (560 nm), and EPR-silent. X-ray crystallographic analysis provided precision structural data sets. The dibenzo-fused corannulene derivatives exhibit blue-green (460 nm) to red (649 nm) fluorescence.  相似文献   

18.
Four-membered rings can be cleaved thermally, Photochemically, or catalytically into two π bonded fragments. Theoretical calculations, kinetic studies, and investigations of stereo- and regioselectivity have been undertaken to clarify the question of whether the reaction involves one or two steps and to permit predictions on its course. [2 + 2]-Cycloreversions have been used to clarify the structure of four-membered rings, to prepare highly reactive π electron-systems and–in combination with a [2 + 2]-cycloaddition–to protect double bonds. The combination of a cycloaddition and-reversion can be used to convert a carbonyl group into an olefin. Starting with compounds containing annelated four-membered rings, compounds with two functional groups or large ring systems can be prepared. [2 + 2]-Cycloreversions have also been discussed in connection with storage of solar energy.  相似文献   

19.
[structures: see text] The synthesis and optical properties of a series of multinanometer-sized substructures of the phenyl-diacetylene carbon allotrope, graphdiyne, are described. These molecules are among the largest and most complex annulenic systems yet prepared, with extension of linear conjugation in two-dimensions to over twice that of any previously reported planar macrocycle. The graphdiyne substructures are constructed through convergent syntheses, taking advantage of three key intermediates and silane-protected phenylacetylenes. Intramolecular macrocyclization of alpha,omega-polyyne precursors via Cu-mediated or Pd-catalyzed oxidative homocoupling affords five new graphdiyne "oligomers" possessing two to four fused 18-membered rings. The attempted synthesis of a six-ring analogue is also reported.  相似文献   

20.
Various 1,2,4-triazoles and 1,3,4-oxadiazole derivatives have been reported to possess diverse biological activities.In addition to above biological activity, we coupled these two rings together to get 1,2,4-triazolo[3,4-b] 1,3,4-oxadiazole derivatives. This ring system was first reported in 1961[1] and synthesized in 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号