首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超临界二氧化碳二元体系相平衡性质的研究   总被引:10,自引:1,他引:9  
采用固定体积可视观察法测定了CO2+甲苯、CO2+环己烷、CO2+正丁醛、CO2+异丁醛、CO2+甲醇及CO2+乙醇二元体系的临界点性质,为超临界萃取和化学反应提供基础数据.在对二元体系相行为与单组分超临界相行为进行比较的基础上,对不同化学物质及不同配比的二元体系临界点与二氧化碳临界点之间的关系进行了讨论.  相似文献   

2.
The solvent strength and selectivity of supercritical fluids (SCF) can be greatly enhanced by addition of one or two entrainers into the system. The amount of entrainer added is usually less than 5% (mole fraction). However, even with such slight amount, solubility of organic solutes has been observed to increase by several orders magnitude[1]. Therefore, critical pressure and tem-perature data of these supercritical fluid + cosolvent systems are imperative for the reasonable design of effici…  相似文献   

3.
Pressure dependence of Raman spectra of benzene/CO2 two-component systems was systematically studied at different temperatures and compositions. We estimated the magnitude of inhomogeneous component in Raman bandwidth to get information on the structural fluctuation in the system. It was found that the inhomogeneous bandwidth attains a maximum on an isothermal plane in the temperature-pressure-composition three-dimensional phase diagram when the state point crosses the line connecting the region where the density fluctuation is large (the vicinity of the critical point of neat CO2) and the region where the concentration fluctuation in a binary system is enhanced (the vicinity of the critical solution point). By accumulating such data, we found that the points of large structural fluctuation comprise a sheet that includes the extension line of the gas-liquid equilibrium line in the phase diagram of neat CO2 and the line connecting critical solution points of the two-component system at different temperatures. Interaction between benzene and CO2 molecules in the supercritical region is briefly discussed.  相似文献   

4.
A new force field for dimethyl ether (DME) based on the Lennard-Jones (LJ) 12-6 plus point charge functional form is presented in this work. This force field reproduces experimental saturated liquid and vapor densities, vapor pressures, heats of vaporization, and critical properties to within the statistical uncertainty of the combined experimental and simulation measurements for temperatures between the normal boiling and critical point. Critical parameters and normal boiling point are predicted to within 0.1% of experiment. This force field is used in grand canonical histogram reweighting Monte Carlo simulations to predict the pressure composition diagrams for the binary mixtures DME + SO(2) at 363.15 K and DME + CO(2) at 335.15 and 308.15 K. For the DME + SO(2) mixture, simulation is able to qualitatively reproduce the minimum pressure azeotropy observed experimentally for this mixture, but quantitative errors exist, suggesting that multibody effects may be important in this system. For the DME + CO(2) mixture, simulation is able to predict the pressure-composition behavior within 1% of experimental data. Simulations in the isobaric-isothermal ensemble are used to determine the microstructure of DME + SO(2) and DME + CO(2) mixtures. The DME + SO(2) shows weak pairing between DME and SO(2) molecules, while no specific pairing or aggregation is observed for mixtures of DME + CO(2).  相似文献   

5.
A new expression of mixing rule is suggested according to the Mayson‘s mixing rule in this paper,which adopts the Redlich-Kwong cubic equation of state and the modifed Chueh-Prausnitz method to calculate the experiment critical points of six binary mixtures CO2 toluene,CO2 cyclohexane,CO2 n-butanal,CO2 i-butanal,CO2 methanol,CO2 ethanol.The coefficients of interaction parameter in the expression of mixing rule were optimized from experimental data.The calculated results of critical temperature and critical pressure meet the experiment data well.The maximum relative errore of temperature and pressure between the calculation results and experiment data are 1.493% and 5.2236% respectively,indicating that the proposed expression of mixing rule is reasonable.This may provide a fundamental method for studying and predicting the properties of supercritical fluids.  相似文献   

6.
An understanding of homogeneous catalysis in supercritical fluids requires a knowledge of the phase behavior and the variation in critical point as the reaction proceeds. In this paper, the critical temperatures, T(c) and pressures, P(c), have been measured for a considerable number of mixtures representing the various stages of the hydroformylation reaction of propene in supercritical CO(2) and different reactant concentrations. Critical point data have also been measured for all of the binary mixtures of the components (CO(2), H(2), CO, propene, n- and isobutyraldehyde) which are not available from the literature or can be deduced from published data. We use the stoichiometry of the reacting system to simplify greatly the phase behavior problem by defining a path through the otherwise multidimensional "phase space". Satisfactory modeling of the data (0.3% in T(c) and 3.0% in P(c)) has been achieved using the Peng-Robinson equation of state and ignoring all binary interactions which do not involve CO(2). The model is used to explore the strategies needed to avoid phase separation in continuous and batch reactions. At a given temperature, a batch reactor may need to be run under much higher pressures than a flow reactor if single-phase conditions are to be preserved throughout the course of the reaction. Most of the critical point data were measured acoustically, but a selection of points were validated using more traditional view-cell procedures.  相似文献   

7.
The dependent relation between temperature and pressure of supercritical CO2+ ethanol binary system under the pressure range from 5 to 10 MPa with the variety of densities and mole fractions of ethanol that range from 0 to 2% was investigated by the static visual method in a constant volume. The critical temperature and pressure were experimentally determined simultaneously. The PTρ figures at different ethanol contents were described based on the determined pressure and temperature data, from which pressure of supercritical CO2 + ethanol binary system was found to increase linearly with the increasing temperature. P-T lines show certain convergent feature in a specific concentration of ethanol and the convergent points shift to the region of higher temperature and pressure with the increasing ethanol compositions. Furthermore, the effect of density and ethanol concentration on the critical point of CO2 + ethanol binary system was discussed in details. Critical points increase linearly with the increasing mole fraction of ethanol in specific density and critical points change at different densities. The critical compressibility factors Zc of supercritical CO2 + ethanol binary systems at different compositions of ethanol were calculated and Z c figure was obtained accordingly. It was found from Z c figure that critical compressibility factors of supercritical CO2 unitary or binary systems decline linearly with the increasing density, by which the critical point can be predicted precisely.  相似文献   

8.
Mutual solubility data of imidazolium-based ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([bmmim][BF4]) with the alcohols, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, and 1-hexanol were obtained by a cloud point method. The upper critical solution temperatures of the ionic liquid and alcohol mixtures were determined from the mutual solubility data. The upper critical solution temperature of the binary mixtures gradually increased as the chain length of the alcohol increased. The mutual solubility data of binary systems ([bmmim][BF4] + alcohols) have been correlated by the original UNIQUAC model as well as the extended and modified form of the UNIQUAC model. The temperature dependence of the mutual solubility data could be represented in terms of the temperature dependence of the binary energy parameters obtained from the correlation. Additionally the influence of water contamination on the ionic liquid mixture was shown experimentally by adding pure water into the binary mixture ([bmmim][BF4] + 1-butanol).  相似文献   

9.
On the basis of the fluctuation theory of phase transitions a system close to the critical point is the ideal gas of order parameter fluctuations. An extended equation of state for binary solutions close to the critical consolute temperature has been proposed taking into account the properties of a real Van der Waals gas in this model. This equation has been used to analyze the temperature dependences of the concentrations of a series of nitrobenzene + alkane binary solutions in terms of different order parameters. It has been shown that the molar concentration of the solution should be used as an order parameter of the analyzed systems. It has been determined that the parameters of the extended equation of state are linear functions of (a) the number of carbon atoms in alkanes and (b) the compressibility factor of the solution components.  相似文献   

10.
The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO(2)+acetonitrile+phenol blue and CO(2)+acetic acid+phenol blue systems are investigated at 308.15 K in critical region and outside critical region. To do this, the local compositions of CO(2)+acetonitrile and CO(2)+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO(2) and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO(2) and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.  相似文献   

11.
We present here the extension of the crossover soft-statistical associating fluid theory (soft-SAFT) equation of state to mixtures, as well as some illustrative applications of the methodology to mixtures of particular scientific and technological interest. The procedure is based on White's work (White, J. A. Fluid Phase Equilib. 1992, 75, 53) from the renormalization group theory, as for the pure fluids, with the isomorphism assumption applied to the mixtures. The equation is applied to three groups of mixtures: selected mixtures of n-alkanes, the CO2/n-alkane homologous series, and the CO2/1-alkanol homologous series. The crossover equation is first applied to the pure components of the mixtures, CO2 and the 1-alkanol family, while an available correlation is used for the molecular parameters of the n-alkane series (Llovell et al. J. Chem. Phys 2004, 121, 10715). A set of transferable molecular parameters is provided for the 1-alkanols series; these are accurate for the whole range of thermodynamic conditions. The crossover soft-SAFT equation is able to accurately describe these compounds near to and far from the critical point. The theory is then used to represent the phase behavior and the critical phenomena of the selected mixtures. We use binary interaction parameters xi and eta for dissimilar mixtures. These parameters are fitted at some particular conditions (one subcritical temperature or binary critical data) and used to predict the behavior of the mixture at different conditions (other subcritical conditions and/or critical conditions). The equation is able to capture the continuous change in the critical behavior of the CO2/n-alkane and the CO2/1-alkanol homologous series as the chain length of the second compound increases. Excellent agreement with experimental data is obtained, even in the most nonideal cases. The new equation is proved to be a powerful tool to study the global phase behavior of complex systems, as well as other thermodynamic properties of very challenging mixtures.  相似文献   

12.
The SAFT-VRX equation of state combines the SAFT-VR equation with a crossover function that smoothly transforms the classical equation into a nonanalytical form close to the critical point. By a combinination of the accuracy of the SAFT-VR approach away from the critical region with the asymptotic scaling behavior seen at the critical point of real fluids, the SAFT-VRX equation can accurately describe the global fluid phase diagram. In previous work, we demonstrated that the SAFT-VRX equation very accurately describes the pvT and phase behavior of both nonassociating and associating pure fluids, with a minimum of fitting to experimental data. Here, we present a generalized SAFT-VRX equation of state for binary mixtures that is found to accurately predict the vapor-liquid equilibrium and pvT behavior of the systems studied. In particular, we examine binary mixtures of n-alkanes and carbon dioxide + n-alkanes. The SAFT-VRX equation accurately describes not only the gas-liquid critical locus for these systems but also the vapor-liquid equilibrium phase diagrams and thermal properties in single-phase regions.  相似文献   

13.
Cyclic voltammetric (CV) techniques have been employed to study the mixed micellar behavior of binary mixtures of triblock polymers (TBP) such as F127+P85, F127+P85, F88+P85, and F88+P123 using 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) as an electroactive probe. Critical micellar concentration (cmc) has been obtained for pure triblock polymers and their mixed systems from the plots of peak current (ip) variation versus the total concentration. Diffusion coefficients of the electroactive species have been determined from the Randles–Sevcik equation. The interaction parameter (β) for the mixed micelles was obtained from the regular solution theory. The values of β suggest that the synergism does exist especially with the F88+P123 system. Cloud point measurements have also been made on the binary mixtures of triblock polymers following similar mixing criteria. An effort has been made to correlate the micellar behavior and phase separation (cloud point) phenomenon. From the correlation, it can be concluded that in the systems studied, an increase in cmc increases the cloud point of mixed systems of triblock polymers.  相似文献   

14.
Cloud-point curves, critical points, and coexistence curves with feed concentrations close to the critical concentration were measured in three systems involving cyclohexane + different polydisperse polystyrenes. The shape of the coexistence curves is analyzed by using a scaling expression. In two systems the critical exponent β possesses values somewhat larger than in actual binary systems (where β ≈ 1/3), whereas in the third system a somewhat smaller value is found. By using a three-parameter Gibbs free energy relation, cloud-point curves and coexistence curves are calculated from the critical point data and from the slope of the cloud-point curve at this point. To account for polydispersity, the method of continuous thermodynamics is applied. The cloud-point curves are well described, but the prediction of the coexistence curves is bad due to the mean-field character of the Gibbs free energy relation resulting in β = 1/2. Hence, the often used practice of fitting the parameters of a mean-field Gibbs free energy relation to the critical point and to some cloud points and then to calculate the coexistence data is to be considered with great care.  相似文献   

15.
The reaction rate of the Diels-Alder reaction between N-ethylmaleimide and 9-hydroxymethylanthrance in CO2 + ethanol and CO2 + hexane mixed solvents of different compositions were determined by in situ UV/vis spectroscopy at 318.15 K and different pressures. The density of the mixed solvents at different pressures was also determined and the isothermal compressibility was calculated using the density data. The activation volume of the reaction was calculated based on the dependence of rate constant (kc) on pressure. It was demonstrated that the kc was very sensitive to the pressure in the mixed solvents near the critical region and the kc increased dramatically as pressure approached dew points, critical point, and bubble points of the mixed solvents. However, the kc in the mixed solvents outside the critical region or in pure CO2 was not sensitive to pressure. At suitable conditions, kc could be 40 times larger than that in acetonitrile. The activation volume of the reaction was nearly independent of pressure as the pressure was much higher than the phase separation pressure of the mixed solvents, while it increased considerably as pressure approached the bubble points, critical point, and dew points from high pressure. The clustering of the solvent molecules with the reactants and the activated complex in the reaction systems near the phase boundary in the critical region may be the main reason for the interesting phenomena observed. This work also shows that, using pure CO2 as the solvent, the reaction cannot be carried out in the critical region of the solvent due to the limitations of the reactants, while it can be conducted in the critical region of mixed solvents of suitable compositions, where the solvents are highly compressible and the reaction rate can be tuned effectively by pressure.  相似文献   

16.
Carbonate adsorption on goethite in competition with phosphate   总被引:1,自引:0,他引:1  
Competitive interaction of carbonate and phosphate on goethite has been studied quantitatively. Both anions are omnipresent in soils, sediments, and other natural systems. The PO4-CO3 interaction has been studied in binary goethite systems containing 0-0.5 M (bi)carbonate, showing the change in the phosphate concentration as a function of pH, goethite concentration, and carbonate loading. In addition, single ion systems have been used to study carbonate adsorption as a function of pH and initial (H)CO3 concentration. The experimental data have been described with the charge distribution (CD) model. The charge distributions of the inner-sphere surface complexes of phosphate and carbonate have been calculated separately using the equilibrium geometries of the surface complexes, which have been optimized with molecular orbital calculations applying density functional theory (MO/DFT). In the CD modeling, we rely for phosphate on recent parameters from the literature. For carbonate, the surface speciation and affinity constants have been found by modeling the competitive effect of CO3 on the phosphate concentration in CO3-PO4 systems. The CO3 constants obtained can also predict the carbonate adsorption in the absence of phosphate very well. A combination of inner- and outer-sphere CO3 complexation is found. The carbonate adsorption is dominated by a bidentate inner-sphere complex, (FeO)2CO. This binuclear bidentate complex can be present in two different geometries that may have a different IR behavior. At a high PO(4) and CO3 loading and a high Na+ concentration, the inner-sphere carbonate complex interacts with a Na+ ion, probably in an outer-sphere fashion. The Na+ binding constant obtained is representative of Na-carbonate complexation in solution. Outer-sphere complex formation is found to be unimportant. The binding constant is comparable with the outer-sphere complexation constants of, e.g., SO(2-)4 and SeO(2-)4.  相似文献   

17.
《Fluid Phase Equilibria》2003,214(2):121-136
The fluid phase behaviour for the binary systems carbon dioxide+cyclobutanone and propane+cyclobutanone has been determined experimentally, using Cailletet equipment. For both the systems bubble points have been determined for a number of isopleths covering the whole mole fraction range. Additionally, for the binary system carbon dioxide+cyclobutanone dew points and critical points could be observed for a number of overall-compositions rich in carbon dioxide. The temperature and pressure range were, respectively, from 278 to 369 K and from 0.1 to 14.0 MPa. Correlation of the experimental data of both systems has been performed using the Soave–Redlich–Kwong (SRK) equation of state. Satisfactory results have been achieved using only one binary interaction parameter.  相似文献   

18.
采用变阱宽方阱链流体(SWCF-VR)状态方程关联了CO2在几种常规物理吸收溶剂中的溶解度数据,得到了二元交互作用参数,建立了二元交互作用参数与温度的关联式.结果表明,采用一个二元交互作用参数,SWCF.VR方程均能很好地描述CO2在常规流体中的溶解度,尤其能满意再现甲醇低温洗工艺中CO2-甲醇的相行为.利用建立的二元交互作用参数与温度的关联式,可将SWCF-VR状态方程拓展应用于预测二元系统气液两相的密度以及CO2-物理吸收溶剂多元系统的气液平衡.  相似文献   

19.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

20.
Li  YingFeng  Yu  YangXin  Zheng  YuanXiang  Li  JiDing 《中国科学:化学(英文版)》2012,55(9):1825-1831,2003,2004
The effects of solid-fluid interactions on the vapor-liquid phase diagram,coexistence density,relative volatility and vaporization enthalpy have been investigated for confined binary systems of CO 2-CH 4,CO 2-N 2 and CH 4-N 2.The Gibbs ensemble Monte Carlo(GEMC) simulation results indicate that the confinement and the solid-fluid interaction have significant influences on the vapor-liquid equilibrium properties.The confinement and the strength of the solid-fluid interaction make the p-x i phase diagram move to higher pressure regions.They also make the two-phase region become narrower for each binary mixture.The strength of the solid-fluid interactions can cause increases in the coexistence liquid and vapor densities,and cause the decrease of the relative volatility and the vaporization enthalpy for the systems studied.As the pore width is decreased,the two-phase region of the binary mixture becomes narrower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号