首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An easy and effective method to prepare superhydrophobic thin film has been developed. The film with optically transparent and low refractive index was composed by one-step coating with modified silica nanoparticles. The silica nanoparticles were prepared by sol–gel process of hydrolysis and condensation of alkoxysilane compounds and then surface modification silica nanoparticles, 50 ± 10 nm, were accomplished using methoxytrimethylsilane (MOTMS). Water contact angle of film increased with the weight of MOTMS of silica sol. When the weight of MOTMS was optimized, the water contact angle and sliding angle of film were 152.8° and less than 10°, respectively. The transmittance of film was also increased as compared to the un-coated microscope glass slide, from 91 to 93.5 %. The refractive index of the film was approximately 1.09 as measured by ellipsometer. The superhydrphobic thin film was also successfully made by using spray coating and the water contact angle of this film was more than 160°. Surface morphology of difference coating methods, dip and spray, were studied. Our result suggests that the film can be applied for superhydrophobicity and optical applications.  相似文献   

2.
王凤平  闫姝均 《应用化学》2012,29(11):1291-1296
以棕榈酸-乙醇溶液为疏水剂,利用直接浸泡法在纯铜表面上构筑了超疏水薄膜。 纯铜表面超疏水薄膜的最佳制备条件为:0.03 mol/L棕榈酸-乙醇溶液,室温(20~22 ℃),浸泡144 h。 通过扫描电子显微镜、接触角测量仪、红外光谱仪和高精密电子天平对超疏水表面进行了表征和分析。 实验结果表明,纯铜试样表面形成了100~200 μm大小的草状棕榈酸铜微簇,接触角达到了150°,其具有较好的抗结垢性能。  相似文献   

3.
We report the formation of a stable superhydrophobic surface via aligned carbon nanotubes (CNTs) coated with a zinc oxide (ZnO) thin film. The CNT template was synthesized by chemical vapor deposition on an Fe-N catalyst layer. The ZnO film, with a low surface energy, was deposited on the CNT template by the filtered cathodic vacuum arc technique. Contact angle measurement reveals that the surface of the ZnO-coated CNTs is superhydrophobic with water contact angle of 159 degrees . Unlike the uncoated CNTs surface, the ZnO-coated CNTs surface shows no sign of water seepage even after a prolonged period of time. The wettability of the surface can be reversibly changed from superhydrophobicity to hydrophilicity by alternation of ultraviolet (UV) irradiation and dark storage.  相似文献   

4.
Two-dimensional gold nanostructures have been fabricated by electrochemical deposition of gold nanoparticles onto indium tin oxide (ITO) glass substrate modified with thin polypyrrole film. By controlling the electrodeposition conditions, gold nanoparticles with dendritic rod, sheet, flower-like (consisting of staggered nanosheets), and pinecone-like structures were generated. The flower-like gold nanoparticles showed high catalytic activity on electrochemical reduction of oxygen, and its activity was measured to be approximately 25 times that of gold pinecones and 10(4) times that of gold nanosheets in terms of gold weight. The pinecone-like nanoparticles can form a compact film with nano-/microscale binary structure like a lotus leaf surface. After modification with n-dodecanethiol, the surface showed superhydrophobic properties with a water contact angle of 153.4 degrees and a tilt angle of 4.4 degrees (5 microL droplet).  相似文献   

5.
Poly-silicon based superhydrophobic surface (water contact angle >150°) is being fabricated and its electrowetting properties have been studied. The polysilicon thin film has been deposited over patterned gold electrodes. The polysilicon film is structured to form nanoscale features using Reactive Ion Etching. A thin film of HfO2 high k-dielectric is deposited over the structured polysilicon surface. The surface was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (PFOS). Such a surface showed Superhydrophobic behavior with water contact angle of 172° and roll off angle <3°. The electrowetting properties of the fabricated device was studied by applying a DC voltage between the gold electrode and the droplet. The electrowetting commences when the applied voltage was 18 V and the contact angle is reduced to 152°. As the applied voltage was increased there was decrease in contact angles.  相似文献   

6.
采用提拉法在聚酰亚胺薄膜表面分步涂覆了银纳米线及疏水纳米二氧化硅, 分别构筑了导电网络及超疏水涂层, 制备了超疏水抗静电透明薄膜. 研究结果表明, 超疏水抗静电透明薄膜保持了较高的透光性, 其透光率高于90%. 同时, 银纳米线网络的构筑有效增加了超疏水抗静电透明薄膜的导电性, 使其表面电阻介于106~1010 Ω之间, 达到了抗静电要求. 水滴在该薄膜表面静态接触角高达156.4°, 滚动角小于1°, 展现了优异的超疏水特性. 通过导电网络及疏水涂层的构筑, 实现了透明及抗静电超疏水多功能的统一.  相似文献   

7.
聚苯硫醚超疏水复合涂层的制备与性能   总被引:1,自引:0,他引:1  
利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂法在瓷砖表面制备了疏水复合涂层.研究了热处理温度、组分配比对涂层表面形貌、粗糙度和接触角的影响,发现随着热处理温度升高,涂层表面粗糙度增大,随着疏水性二氧化硅含量的增加,由于表面聚集的疏水性二氧化硅增多,涂层疏水性增强,在热处理温度为280℃、疏水性二氧化硅与聚苯硫醚质量比为1∶1时,可获得超疏水涂层,涂层的接触角大于150°,滚落角小于4°,pH值为1~14的水溶液在其表面都具有很高的接触角.超疏水涂层具有良好的自清洁效果,并且经落沙法实验测定,超疏水涂层耐刮伤性能良好.  相似文献   

8.
Transparent superhydrophobic films based on silica nanoparticles   总被引:1,自引:0,他引:1  
We demonstrate a layer-by-layer processing scheme that can be utilized to create transparent superhydrophobic films from SiO2 nanoparticles of various sizes. By controlling the placement and level of aggregation of differently sized nanoparticles within the resultant multilayer thin film, it is possible to optimize the level of surface roughness to achieve superhydrophobic behavior with limited light scattering. Transparent superhydrophobic films were created by the sequential adsorption of silica nanoparticles and poly(allylamine hydrochloride). The final assembly was rendered superhydrophobic with silane treatment. Optical transmission levels above 90% throughout most of the visible region of the spectrum were realized in optimized coatings. Advancing water droplet contact angles as high as 160 degrees with low contact angle hysteresis (<10 degrees ) were obtained for the optimized multilayer thin films. Because of the low refractive index of the resultant porous multilayer films, they also exhibited antireflection properties.  相似文献   

9.
The superhydrophobic surface on copper is fabricated by using a simple hydrothermal reaction and subsequent perfluorosilane treatment. The micro‐structured and nano‐structured surface was directly obtained through the hydrothermal reaction of copper sheets with sulfur at 180 °C for 12 h, resulting in the formation of copper sulfide film on the copper substrate. The chemical composition of this film was confirmed using X‐ray photoelectron spectroscopy. After copper sulfide film is treated by perfluorosilane, the superhydrophobic surface with static water contact angle of 153 °C and a low contact angle hysteresis is achieved. The superhydrophobic surface shows strong mechanical stability and can effectively protect the copper substrate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We first fabricated the superhydrophobic film with a water contact angle of 178 degrees based on a perpendicular nanopin fractal structure by a bottom-up process. Until now, only materials with an original water contact angle larger than 90 degrees , which is classified as hydrophobicity, could be used to fabricate the superhydrophobic film (>170 degrees ) according to the possible fractal structure by a top-down process. Now, in this work, a water contact angle of about 178 degrees can be achieved using a lauric acid-coated film with an original contact angle of 75 degrees , which is classified as hydrophilicity, based on an ideal fractal structure for the superhydrophobic surface which is fabricated by the nanosize pin with 6.5 nm diameter.  相似文献   

11.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

12.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

13.
A new method has been developed for the superhydrophilic surface modification of copper using versatile solution-based fabrication techniques. The high surface area of TiO(2) nanoparticles was exploited to create a thin film with increased surface energy that transformed copper materials from relatively hydrophobic to superhydrophilic. Copper exposed to ambient conditions resulting in a thin layer of copper oxide has a water contact angle near 90°, but following TiO(2) modification, the contact angle dropped to 0°. The thin film responsible for this drastic improvement in wettability proved durable by retaining its excellent properties throughout an extended application of thermal stress. SEM and Raman Spectroscopic analysis confirmed the structural integrity of the film before and after a durability test.  相似文献   

14.
A superhydrophobic ZnO thin film was fabricated by the Au-catalyzed chemical vapor deposition method. The surface of the film exhibits hierarchical structure with nanostructures on sub-microstructures. The water contact angle (CA) was 164.3 degrees, turning into a superhydrophilic one (CA < 5 degrees) after UV illumination, which can be recovered through being placed in the dark or being heated. The film was attached tightly to the substrate, showing good stability and durability. The surface structures were characterized by scanning electron microscopy and atomic force microscopy.  相似文献   

15.
Design of a superhydrophobic surface using woven structures   总被引:2,自引:0,他引:2  
The relationship between surface tension and roughness is reviewed. The Cassie-Baxter model is restated in its original form, which better describes the most general cases of surface roughness. Using mechanical and chemical surface modification of nylon 6,6 woven fabric, an artificial superhydrophobic surface was prepared. A plain woven fabric mimicking the Lotus leaf was created by further grafting 1H,1H-perfluorooctylamine or octadecylamine to poly(acrylic acid) chains which had previously been grafted onto a nylon 6,6 woven fabric surface. Water contact angles as high as 168 degrees were achieved. Good agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the surface area fractions in this form is valid only when the liquid is in contact with a flat, porous surface. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. It is shown that the roll-off angle is highly dependent on droplet size. The roll-off angles of these superhydrophobic surfaces were less than 5 degrees when a 0.5 mL water droplet was applied.  相似文献   

16.
通过聚二甲基硅氧烷(PDMS)与碳纤维织物复合, 采用模板法在PDMS聚合物表面构筑微阵列结构, 制备了一种具有可重复粘贴性的超疏水薄膜. 研究结果表明, 该薄膜微结构表面的接触角为154°, 滚动角为14°, 具有低黏附的超疏水特性. 而PDMS与碳纤维织物的紧密结合, 赋予了超疏水薄膜较高的黏接力和力学性能, 断裂强度达到116.96 MPa. 所制备的超疏水薄膜可粘贴于多种材料表面, 同时经过30 d的长时间粘贴以及50次的循环粘贴后, 该薄膜依然保持着较高的黏附性能及超疏水特征, 表明超疏水薄膜具有良好的力学稳定性及耐久性, 满足长时间可重复使用的要求, 可应用于对破损超疏水涂层的快速、 大面积粘贴修复.  相似文献   

17.
A facile method was developed for the fabrication of the methyltriethoxysilane based transparent and superhydrophobic coating on glass substrates. The transparent and hydrophobic coatings were deposited on the glass substrates, using spray deposition method followed by surface modification process. A spray deposition method generates hierarchical morphology and post surface modification with monofunctional trimethylchlorosilane decreases the surface free energy of coating. These combined effects of synthesis produces bio-inspired superhydrophobic surface. The deposited coating surface shows high optical transparency, micro-nano scale hierarchical structures, improved hydrophobic thermal stability, static water contact angle of about 167° ± 1°, low sliding angle about 2° ± 1° and stable superhydrophobic nature. This paper provides the very simple sol–gel approach to the fabrication of optically transparent, thermally stable superhydrophobic coating on glass substrates. This fabrication strategy may easily extend to the industrial scale up and high-technology fields.  相似文献   

18.
A superhydrophobic surface of lead dodecanethiolate with the water contact angle(CA) of 152.2°±1.2° and the sliding angle(SA) of 3.8°±1.0° was fabricated using a simple and relative inexpensive route based on our previous reported method. The procedure employed a one-pot reaction between lead salt and alkanethiolate to form a thermal stable superhydrophobic coating under mild conditions. SEM images revealed the lead dodecanethiolate surface morphology with packed aggregate “rice-like” particles of micrometer scale in length and nanometer scale in thickness. Also, Lead dodecanethiolate powder was investigated by TGA and XRD.  相似文献   

19.
In this paper, we report a simple and versatile route for the fabrication of superhydrophobic thermoplastic polyurethane (TPU) films. The approach is based on octadecanamide (ODAA)-directed assembly of nanosilica/TPU/ODAA hybrid with a well-defined sheetlike microstructure. The superhydrophobic hybrid film shows a transparent property, and its water contact angle reaches as high as 163.5° without any further low surface energy treatment. In addition, the superhydrophobic TPU hybrid film with fluorescent properties is achieved by smartly introducing CdTe quantum dots, which will extend potential application of the film to optoelectronic areas. The resulting fluorescent surface produced in this system is stable and has a water contact angle of 172.3°. This assembly method to control surface structures represents an intriguing and valuable route to tune the surface properties of organic-inorganic hybrid films.  相似文献   

20.
Fabrication of superhydrophobic surface was achieved by electroless deposition of silver film and subsequent immersion into a mixture of stearic acid and cysteamine. The resultant superhydrophobic surface with flower and fall‐leaves like structure showed lotus leaf effect with the water contact angle of about 154° making copper surface water repellant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号