首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

2.
We successfully prepared QDs incorporated into a silica/alumina monolith (QDs‐SAM) by a simple sol–gel reaction of an Al–Si single precursor with CsPbBr3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr3 QDs from surface damages during the sol–gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr3 QDs‐SAM in powder form was easily mixed into the resins and applied as color‐converting layer with curing on blue light‐emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W−1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm.  相似文献   

3.
In the literature, lead halide perovskites are very notable for their degradation in the presence of polar solvents, such as water. In contrast, in this research, it is observed that adding a minor amount of water into the precursor solution can improve the stability and photoluminescence quantum yield of CsPbBr3 nanocrystals through a ligand-assisted reprecipitation (LARP) method. In this way, the shape and phase transformation from CsPbBr3 nanoplates to CsPbBr3/Cs4PbBr6 nanorods and Cs4PbBr6 nanowires can be controlled with increasing water content in the precursor solution. Upon adding water up to an ideal amount, CsPbBr3 maintains its phase and nanoplate morphology. The key role of water amount for tuning the crystallinity, stability, morphology, optical properties, and phase transformation of cesium lead halide perovskite nanocrystals will be beneficial in the future commercialization of optoelectronics.  相似文献   

4.
Bidentate chelation, meso‐2,3‐dimercaptosuccinic acid (DMSA), was used as a stabilizer for the synthesis of CdTe quantum dots (QDs). The bidentate chelate QDs, characterized with FT‐IR, PL, and UV/Vis spectroscopy; element analysis; and high‐resolution transmission electron microscope, exhibited surface traps due to the large surface/volume ratio of QD particle and the steric hindrance of the DMSA molecule. The unpassivated surface of the QDs produced a narrower band gap than the core and electrochemiluminescent (ECL) emission at relatively low cathodic potential. In air‐saturated pH 7.0 buffer, the QDs immobilized on electrode surface showed an intense ECL emission peak at ?0.85 V (vs. Ag/AgCl). H2O2 produced from electrochemical reduction of dissolved oxygen was demonstrated to be the co‐reactant, which avoided the need of strong oxidant as the co‐reactant and produced a sensitive analytical method for peroxidase‐related analytes. Using hydroquinone/horseradish peroxidase/H2O2 as a model system, a new, reagentless, phenolic, ECL biosensor for hydroquinone was constructed, based on the quenching effect of ECL emission of QDs by consumption of co‐reactant H2O2. The biosensor showed a linear range of 0.2–10 μM with acceptable stability and reproducibility. This work opens new avenues in the search for new ECL emitters with excellent analytical performance and makes QDs a more attractive alternative in biosensing.  相似文献   

5.
Xuan Liu 《Talanta》2009,78(3):691-1606
A novel method for electrochemiluminescent (ECL) detection of nitrite was proposed based on its quenching effect on anodic ECL emission of CdSe quantum dots (QDs). The ECL emission could be greatly enhanced by sulfite and dissolved oxygen in a neutral system and occurred at a relatively low potential in comparison with traditional anodic ECL emitter, leading to high sensitivity and good selectivity. The quenching mechanism followed an “electrochemical oxidation inhibition” process, which was completely different from those of some analytes on the ECL emission of QDs. The coincidence of photoluminescence and ECL spectra of the QDs indicated that the ECL emission resulted from the redox process of QDs core and the sulfite acted as a coreactant. The nitrite quenched ECL emission could be analyzed according to the treatment of Stern-Volmer equation with a linear range from 1 μM to 0.5 mM for detection of nitrite. This work presented a new efficient ECL methodology for quencher-related detection.  相似文献   

6.
CdSe quantum dots as cores capped with ZnSe shell (CdSe@ZnSe QDs) via a facile and eco-friendly strategy have been synthesized in aqueous solution for the first time. The electrochemiluminescence (ECL) of CdSe@ZnSe QDs was greatly enhanced compared to that of CdSe QDs. In particular, the ECL properties of the resulting CdSe@ZnSe QDs were found to be controllable by adjusting the thickness of ZnSe shells. Benefiting from the enhanced ECL intensity, the sensor based on CdSe@ZnSe QDs could accurately quantify dopamine from 10.0 nM to 3.0 μM with a detection limit of 3.6 nM.  相似文献   

7.
Chen L  Lu L  Mo Y  Xu Z  Xie S  Yuan H  Xiao D  Choi MM 《Talanta》2011,85(1):56-62
Highly ordered titanium dioxide (TiO2) nanotubes film was successfully synthesized via anodic oxidation of a Ti foil in an ammonium fluoride-based ethylene glycol solution. The electrogenerated chemiluminescence (ECL) behavior of the resulting TiO2 nanotubes film was subsequently studied. Strong ECL emission was observed at −1.40 V (vs. Ag/AgCl) and the ECL spectrum displayed three emission peaks which were bathochromatically shifted by ca. 140 nm as compared to its corresponding photoluminescence (PL) emission peaks, indicating that the surface state plays an important role in the emission process. The ECL emission can also occur in a deareated solution attributing to the surface adsorbed O2 molecules. The ECL emission intensity was quenched by dopamine and greatly enhanced in the presence of dissolved O2 and H2O2, making it possible to detect these analytes. The TiO2 nanotubes film has been successfully applied to determine the dissolved O2 content in river and pond water samples, the H2O2 concentration in commercial disinfectant samples and the dopamine concentration in commercial dopamine injections with satisfactory results. The plausible ECL mechanisms of TiO2 nanotubes film in aqueous solution are discussed.  相似文献   

8.
Cesium lead halide (CsPbX3: X = I, Br, Cl) nanocrystals (NCs) are believed to be potential candidates for bioimaging applications. However, their low structural stability against polar solvents remains as a major limitation. To improve the NCs stability and maintain high emission intensity, we synthesized silica coated Zn-doped core@shell perovskite NCs via modified ligand assisted reprecipitation (LARP) synthetic method under relatively high humid condition. We systemically varied the composition inside the perovskite structure and then studied their photophysical properties and stability. Interestingly, the Zn-doping amount controls the ratio of CsPbBr3 to Cs4PbBr6 perovskites inside the core and also facilitates the growth of (OA)2PbBr4 shell, enables overall increase in NCs emission intensity and stability. We observed green color emission from these NCs in the spectral range of 494-506 nm with a maximum photoluminescence quantum yield (PLQY) up to 88%. The optimized Zn-doped NCs exhibited nearly four times better water stability compared to the bare NCs and retain emission properties for several months even in highly polar solvents. Finally, we performed biocompatibility test of the NCs generated on biological samples and hydroponics test in a gardenia leaf for their potential bioimaging applications.  相似文献   

9.
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching. The quenching effect of Cu2+ on the anodic ECL of CdTe QDs was found to be selective and concentration dependent, so we applied it to develop a method for the sensitive and selective detection of Cu2+. With the proposed method, the concentration of Cu2+ could be detected in the range of sub-nanomolar to micromolar levels.  相似文献   

10.
The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.

We demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites.  相似文献   

11.
A rapid and ultrasensitive electrochemiluminescence (ECL) competitive immunoassay based on CdSe quantum dots (QDs) and the shorter chain as possible (cysteamine and glutaraldehyde) has been designed for the detection of salbutamol (SAL). Cysteamine and glutaraldehyde made coating antigen immobilize well on the gold electrode surface through the reaction between functional groups, which brought about the simplicity of the immunosensor to some extent. Transmission electron microscopy image, dynamic light scattering, photoluminescence, ultraviolet‐visible absorption and electrochemical impedance spectra were used to characterize the prepared CdSe QDs and the cysteamine/glutaraldehyde/Ovalbumin‐SAL/anti‐SAL‐QDs immunosensor. In the air‐saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 9.0), a strong ECL emission of QDs can be observed which depended linearly on the logarithm of the salbutamol concentration with a wide range from 0.05 ng mL?1 to 100 ng mL?1, and a detection limit of 0.0056 ng mL?1. The sensitivity, repeatability, and specificity of the ECL immunosensor have been evaluated. The sensor has been applied to real samples with satisfactory results. This work will open new ways of detecting food additive residue based on QDs ECL in immunoassays.  相似文献   

12.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

13.
Bipolar electrochemistry (BPE) contrasts very much with conventional electrochemistry because it is based on the control of the solution potential instead of the working electrode potential. In a typical setup, a piece of conducting materials is immersed in an electrolyte and submitted to an electric field. Such conditions split the interfacial nature of the materials into cathodic and anodic domains where electrochemical reactions can readily take place. BPE has many potential applications, and the present contribution aims to focus on recent analytical applications that involve electrogenerated chemiluminescence (ECL) detection. ECL is a special case of luminescence where the excited state of the luminophore is populated after a sequence of reaction that is triggered by an initial electron transfer step occurring at the electrode surface. The coupling between BPE and ECL is a powerful approach because it provides a unique opportunity to combine the intrinsic advantages of both techniques. BPE enables the spatial separation of sensing and reporting poles, whereas ECL provides a simple and sensitive visual readout. This opinion article will describe the experimental possibilities and the most recent applications of BPE/ECL coupling for the detection of biorelevant molecular targets.  相似文献   

14.
Lead‐halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common‐place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light‐emitting devices, with the peak luminance of 4428 cd m?2 and external quantum yield of 1.7 %.  相似文献   

15.
Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx‐rich porous g‐C3N4 nanosheets (PCN) to construct the composite photocatalysts via N?Br chemical bonding. The 20 CPB‐PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h?1 g?1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.  相似文献   

16.
Cheng L  Deng S  Lei J  Ju H 《The Analyst》2012,137(1):140-144
A novel disposable solid-state electrochemiluminescent (ECL) biosensor was fabricated by immobilizing glucose oxidase and surface-unpassivated CdTe quantum dots (QDs) on a screen-printed carbon electrode (SPCE). The surface morphology of the biosensor was characterized with scanning electron microscopy and atomic force microscopy. With dissolved O(2) as an endogenous coreactant, QDs/SPCE showed strong ECL emission in pH 9.0 HCl-Tris buffer solution with low ECL peak potential at -0.89 V. The ECL intensity was twice that with hydrogen peroxide as coreactant at the same concentration. This phenomenon meant the ECL decreased upon consumption of dissolved O(2) and thus could be applied to the construction of oxidase-based ECL biosensors. With glucose oxidase as a model enzyme, the biosensor showed rapid response to glucose with a linear range of 0.8 to 100 μM and a detection limit of 0.3 μM. Further detection of glucose contained in human serum samples showed acceptable sensitivity and selectivity. This work provided a promising application of QDs in ECL-based disposable biosensors.  相似文献   

17.
In this paper, the electrogenerated chemiluminescence (ECL) from thiol-capped CdTe quantum dots (QDs) was reported. The ECL emission was occurred at −1.1 V and reached a maximum value at −2.4 V when the potential was cycled between 0.0 and −2.5 V. The reduced species of CdTe QDs could react with the coreactants to produce the ECL emission. The CdTe QD concentration (6.64 × 10−7 mol L−1) of ECL is lower than that (1.0 × 10−3 mol L−1) of chemiluminescence (CL). Based on the enhancement of light emission from thiol-capped CdTe QDs by H2O2 in the negative electrode potential, a novel method for the determination of H2O2 was developed. The light intensity was linearly proportional to the concentration of H2O2 between 2.0 × 10−7 and 1.0 × 10−5 mol L−1 with a detection limit of 6.0 × 10−8 mol L−1. Compared with most of previous reports, the proposed method has higher sensitivity for the determination of H2O2. In addition, the ECL spectrum of thiol-capped CdTe QDs exhibited a peak at around 620 nm, which was substantially red shifted from the photoluminescence (PL) spectrum, suggesting the surface states play an important role in this ECL process.  相似文献   

18.
Amphiphilic anthracene derivatives showed solvent-polarity-dependent fluorescence. Monomer emission and aggregation-induced emission (AIE) were observed in polar and non-polar organic solvents, respectively. AIE became predominant in aqueous solution in the case of hexafluorophosphate as a counter anion.  相似文献   

19.
In this paper, strongly luminescent CdTe quantum dots (QDs) were synthesized in aqueous solution by a facile one-pot method. The CdTe QDs were synthesized in a weakly acidic or neutral buffer solution composed of sodium borate (Na2B4O7) and sodium citrate (C6H5Na3O7). The pH of buffer solution and the ratio of the precursors were systematically optimized; the high-quality CdTe QDs with progressively increasing fluorescence during 60 days storage were obtained. As-prepared QDs can be conjugated with a mouse antibody alpha-fetoprotein via the reaction mediated by N-hydroxysuccinimide and 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride. The conjugate showed a red shift of 9 nm for the emission position.  相似文献   

20.
Cesium lead halide perovskites are an emerging class of quantum dots (QDs) that have shown promise in a variety of applications; however, their properties are highly dependent on their surface chemistry. To this point, the thermodynamics of ligand binding remain unstudied. Herein, 1H NMR methods were used to quantify the thermodynamics of ligand exchange on CsPbBr3 QDs. Both oleic acid and oleylamine native ligands dynamically interact with the CsPbBr3 QD surface, having individual surface densities of 1.2–1.7 nm?2. 10‐Undecenoic acid undergoes an exergonic exchange equilibrium with bound oleate (Keq=1.97) at 25 °C while 10‐undecenylphosphonic acid undergoes irreversible ligand exchange. Undec‐10‐en‐1‐amine exergonically exchanges with oleylamine (Keq=2.52) at 25 °C. Exchange occurs with carboxylic acids, phosphonic acids, and amines on CsPbBr3 QDs without etching of the nanocrystal surface; increases in the steady‐state PL intensities correlate with more strongly bound conjugate base ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号