首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 4-tetrafluoropyridinylthio group was suggested as a new photoredox-active moiety. The group can be directly installed on difluorostyrenes in a single step by the thiolene click reaction. It proceeds upon visible light catalysis with 9-phenylacridine providing various difluorinated sulfides as radical precursors. Single electron reduction of the C–S bond with the formation of fluoroalkyl radicals is enabled by the electron-poor azine ring. The intermediate difluorinated sulfides were involved in a series of photoredox reactions with silyl enol ethers, alkenes, nitrones and an alkenyl trifluoroborate.

A new photoredox-active group was applied for the generation of fluorinated radicals from difluorostyrenes under blue light irradiation.

Organofluorine compounds have gained increasing attention due to their utility in medicinal chemistry and agrochemistry in the last few decades.1 Among various methods of fluorine incorporation, major attention in recent years has been devoted to radical pathways of fluoroalkylation by visible light photoredox catalysis.2,3 This approach has attracted much attention because of the exceptionally mild reaction conditions and functional group tolerance. Known reagents, which are suitable for efficient radical fluoroalkylation such as halides, sulfonyl chlorides, sulfones, sulfinates, and Umemoto and Togni reagents (Scheme 1a),3 suffer from limited structural diversity and complicated preparation. Indeed, besides a significant amount of CF3 and CF2H derivatives, most of the other Rf radical precursors require multistep preparation under harsh conditions.3c,4 As a result, operationally simple methods are still needed.Open in a separate windowScheme 1Generation of fluorinated radicals.Herein we report a simple and diversity-oriented strategy based on the direct introduction of a photoredox-active group into the fluorinated substrate. Our approach involves the addition of tetrafluoropyridine-4-thiol (2, PyfSH) to readily accessible difluorostyrenes followed by photocatalytic reduction with fluoroalkyl radical formation (Scheme 1b). As is well known, the thiol-ene reaction is an excellent instrument for difluorostyrene functionalization leading to sulfides.5 However, C–S bond reduction in common sulfides is challenging owing to their unfavorable redox potential compared to their S-oxygenated counterparts.6,7 To overcome this obstacle, we propose to use an electron-withdrawing fluorinated pyridine moiety, which would be susceptible to SET reduction (Scheme 1a).Thus, we report the application of sulfides as a new class of readily available, bench-stable and easy-to-handle reagents for radical fluoroalkylation under visible-light photoredox catalysis. It is worth mentioning that our concept allows the synthesis of precursors of various Rf radicals in a single step from easily accessible compounds, which is often hard in practice for other photoredox-active groups.3c,4 Thiol 2 can be easily prepared from commercially available pentafluoropyridine8 and the initial difluorostyrenes come from aldehydes by the Wittig-type reaction.9Styrenes 1 serve as a basis for a number of ionic synthones9b,10,11 and recent developments in visible light photoredox catalysis allowed us to replace most of them with complementary radical synthones (Scheme 1c).12,13 Herein, we disclose the last “blind spot” in the map of radical analogues of ionic difluorostyrene synthones. It should be noted that due to facile elimination of the fluorine atom in polar reactions, only a few examples of difluoroalkyl cation synthons have been described previously.11To perform the addition of thiol 2 to styrenes 1, we applied a protocol involving the activation of thiols based on proton coupled electron transfer recently developed by our group.5,14 Thus, screening of reaction conditions allowed us to identify the optimal system: 9-phenylacridine (PC-I) as the photocatalyst under blue light irradiation (see the ESI for details). The reaction is performed in cyclohexane and requires a virtually stoichiometric amount (1.1 equiv.) of the thiol 2. A series of styrenes 1 were reacted with thiols 2 leading to difluorinated sulfides 3 (Table 1). Aromatic and heteroaromatic substrates provided sulfides 3 in good to excellent yields. The only exception was the furan substituted product 3j, which had a low yield due to instability of 1j.15 The product 3k derived from α-pentyl-substituted difluorostyrene was also obtained. In contrast to the reactions with styrenes, only traces of sulfides were obtained with aliphatic gem-difluoroalkenes (see the ESI for details). It should also be pointed out that all reactions shown in Table 1 were performed on a 5 mmol scale.Addition of thiol 2 to gem-difluorostyrenes 1a
Open in a separate windowaIsolated yields are shown.bDCM was used as a solvent.A suggested mechanism for thiol–alkene addition is shown in Scheme 2. Thus, upon interaction of colorless compounds 9-phenylacridine (PC-I) and PyfSH, a red colored salt A is instantly formed (proton transfer, PT). The structure of this salt was studied by X-ray analysis indicating a π–π stacking-type structure, in which positively charged acridinium cations and negatively charged thiolate anions are arranged in parallel planes. The reaction is believed to proceed via light induced electron transfer (ET) thereby representing the proton-coupled electron transfer (PCET) manifold.16 The generated S-centered radical attacks the double bond of styrene 1, and the resulting benzyl radical abstracts the hydrogen atom either from the N–H acridinium radical or from the starting PyfSH.Open in a separate windowScheme 2Plausible mechanism of thiol 2 addition to gem-difluorostyrenes 1.Measurement of the reduction potential of 3a by cyclic voltammetry provided a value of −1.36 V (vs. SCE), which supports the single electron reduction of compounds 3 by means of light activated photocatalysts. After the reduction of sulfide 3a, peaks corresponding to the oxidation of the thiolate anion are observed in the reverse scan (see the ESI for details).Using sulfide 3a as a model substrate, we evaluated its reactions with silyl enol ethers17,18 (see the ESI for optimization details). The reactions were performed in the presence of 20 mol% triphenylphosphine, which, as we noted previously, exerts a beneficial effect on some photoredox reactions.17b,19 Two sets of optimal conditions, both operating using blue LED irradiation, were identified. In the first system, an organic photocatalyst, 12-phenyl-12H-benzo[b]phenothiazine20 (PC-II, 5 mol%), and zinc acetate (0.6 equiv.) as a scavenger of the thiolate byproduct were used (method A).Method A provided good results for the difluoroalkylation of electron-donor-substituted aromatic silyl enolates. Thus, products 5aa, 5ef, 5ad, and 5ai were obtained with excellent yield. Unfortunately, the approach showed poor results for some other substrates. For instance, it is incompatible with aryl halide moieties due to concomitant carbon–halogen bond reduction induced by the phenothiazine catalyst (PC-II).20b For EWG-containing silyl enolates, we observed low yields along with radical polymerization by-products. To overcome these drawbacks, the second system involving an iridium based catalyst [Ir(ppy)2(dtbbpy)]PF6 (PC-III, 0.5 mol%) in combination with 50 mol% tetrabutylammonium iodide (method B) was suggested. The iodide ion is believed to induce reductive quenching of the photoexcited Ir(iii) catalyst generating Ir(ii) species behaving as a reductant of the substrate. Indeed, Stern–Volmer studies demonstrated that the iodide anion serves as a good fluorescence quencher of the iridium photocatalyst (see the ESI). Under optimized conditions, a series of sulfides 3 were coupled with silyl enol ethers 4 (Table 2).Radical reactions of sulfides 3a
Open in a separate windowaIsolated yields are shown.bIr[(dF(CF3)ppy)2(dtbbpy)]PF6 was used as a photocatalyst.cThe decreased isolated yield is due to the partial degradation of the product upon chromatography. The yield given within parenthesis was determined by 19F NMR with an internal standard.Generally, the procedure involving the iridium catalyst provided higher yields of products 5. In the case of 4-chloro-substituted silyl enol ether, the yield of the product 5ac was only 57% with phenothiazine, likely due to the formation of radical oligomerization by-products. However, switching to the iridium/iodide system gave an increased yield of 92%. Presumably, the ability of the latter system to cope with oligomerization is associated with the capture of the intermediate silyloxy-substituted radical by iodine followed by the formation of the carbonyl group.Besides silyl enol ethers, other classes of compounds, which could be expected to trap fluorinated radicals, were evaluated (Table 2). To perform hydroperfluoroalkylation of alkenes bearing an electron withdrawing group, borane reagents were evaluated as sources of the hydrogen atom.21 In this regard, by using excess of pyridine–borane complex in combination with fac-Ir(ppy)3 as the photocatalyst, sulfides 3 were successfully combined with acrylamides, acrylonitrile, tert-butyl acrylate and vinyl phosphonate. Nitrones are known to be good traps for radicals, and reductive addition of fluorinated halides to nitrones has recently been developed.22 Sulfides 3 proved to be competent partners for coupling with nitrones (Table 2). Ascorbic acid in the presence of collidine was employed as the stoichiometric reducing agent using fac-Ir(ppy)3 as the catalyst leading to gem-difluorinated hydroxylamines 9 in good yields.Even nitrones derived from enolizable aldehydes afforded the expected addition product 9fe. We also demonstrated that sulfide 3a can alkylate styryltrifluoroborate 10 in the presence of an iridium photocatalyst under visible light, affording the product 11 as a mixture of cis and trans isomers (Table 2, bottom).Control experiments confirmed that the reaction does not proceed without a photocatalyst or light. Moreover, in the presence of TEMPO, the formation of the product was totally suppressed (Scheme 3). Finally, the gem-difluorinated radical was trapped by a nitrone spin trap, and the nitroxyl radical was detected by EPR spectroscopy.Open in a separate windowScheme 3Mechanistic experiments.  相似文献   

2.
3.
Signal Amplification by Reversible Exchange (SABRE) is a catalytic method for improving the detection of molecules by magnetic resonance spectroscopy. It achieves this by simultaneously binding the target substrate (sub) and para-hydrogen to a metal centre. To date, sterically large substrates are relatively inaccessible to SABRE due to their weak binding leading to catalyst destabilisation. We overcome this problem here through a simple co-ligand strategy that allows the hyperpolarisation of a range of weakly binding and sterically encumbered N-heterocycles. The resulting 1H NMR signal size is increased by up to 1400 times relative to their more usual Boltzmann controlled levels at 400 MHz. Hence, a significant reduction in scan time is achieved. The SABRE catalyst in these systems takes the form [IrX(H)2(NHC)(sulfoxide)(sub)] where X = Cl, Br or I. These complexes are shown to undergo very rapid ligand exchange and lower temperatures dramatically improve the efficiency of these SABRE catalysts.

The scope of the hyperpolarisation method Signal Amplification by Reversible Exchange (SABRE) is dramatically expanded through the use of co-ligands to substrates that weakly interact with the active cataylst.

Hyperpolarised magnetic resonance is receiving increasing attention from both the analytical science and medical communities due to its ability to create signals that are many orders of magnitude higher than those normally detected under Boltzmann control.1–6 The time and cost benefits associated with this improvement have propelled this area of research forward over the past few decades. Two of the most prominent techniques used to create hyperpolarisation are dissolution Dynamic Nuclear Polarisation (d-DNP) and Para-Hydrogen Induced Polarisation (PHIP),7,8 which derive their non-Boltzmann spin energy level populations from interactions with unpaired electrons and para-hydrogen (p-H2, the singlet spin isomer of hydrogen), respectively. Both of these methods have been reviewed in detail.3–5,9,10Signal Amplification by Reversible Exchange (SABRE) is a PHIP method that does not involve the chemical incorporation of p-H2 into the target substrate.11,12 Instead, under SABRE, spin order transfer proceeds catalytically through the temporary formation of a scalar coupling network between p-H2 derived hydride ligands and the substrate''s nuclei whilst they are located in a transient metal complex. The most common catalysts are of the type [Ir(H)2(NHC)(sub)3]Cl (where NHC = N-heterocyclic carbene and sub = the substrate of interest, Fig. 1a),13,14 although other variants are known.15–17 For SABRE to be accomplished, the target substrate must be able to reversibly ligate to the metal centre and this limits the methods applicability; although several routes to overcome this have been reported.18–20 Recently, the use of bidentate ancillary ligands such as NHC-phenolates16 and phosphine-oxazoles21 has been shown to expand the applicability of SABRE for a variety of different ligands and solvents (Fig. 1b). For example, use of the PHOX ligand (PHOX = (2-diphenylphosphanyl)phenyl-4,5-dihydrooxazole) gives 1H NMR signal gains of up to 132-fold for 2-picoline; a substrate previously shown to be unpolarised under classic SABRE conditions.22Open in a separate windowFig. 1Development of the SABRE method for hyperpolarisation of a range of substrates.The use of co-ligands to stabilise the active SABRE catalyst has proven successful for substrates that weakly associate to the catalyst (Fig. 1c). Of particular note is the hyperpolarisation of sodium [1,2]-13C2-pyruvate23 and sodium 13C-acetate24 which could be used as in vivo metabolic probes. The importance of co-ligands in breaking the chemical symmetry of the SABRE catalyst is also well established and co-ligands such as acetonitrile,25 sulfoxides,23,26 1-methyl-1,2,3-triazole27 and substrate isotopologues28 have been employed.We report here on the use of co-ligands to allow the NMR hyperpolarisation of weakly binding N-heterocyclic derived substrates with functionality in the ortho-position that have proven to be routinely inaccessible to the SABRE technique (Fig. 1d). 1H signal gains of up to 1442 ± 84-fold were obtained for some of these substituted pyridines at 9.4 T and the expansion of this approach to 13C and 15N detection and other N-heterocyclic motifs is also exemplified.  相似文献   

4.
Here, we report the nitric oxide monooxygenation (NOM) reactions of a CoIII-nitrosyl complex (1, {Co-NO}8) in the presence of mono-oxygen reactive species, i.e., a base (OH, tetrabutylammonium hydroxide (TBAOH) or NaOH/15-crown-5), an oxide (O2− or Na2O/15-crown-5) and water (H2O). The reaction of 1 with OH produces a CoII-nitrito complex {3, (CoII-NO2)} and hydrogen gas (H2), via the formation of a putative N-bound Co-nitrous acid intermediate (2, {Co-NOOH}+). The homolytic cleavage of the O–H bond of proposed [Co-NOOH]+ releases H2via a presumed CoIII-H intermediate. In another reaction, 1 generates CoII-NO2 when reacted with O2−via an expected CoI-nitro (4) intermediate. However, complex 1 is found to be unreactive towards H2O. Mechanistic investigations using 15N-labeled-15NO and 2H-labeled-NaO2H (NaOD) evidently revealed that the N-atom in CoII-NO2 and the H-atom in H2 gas are derived from the nitrosyl ligand and OH moiety, respectively.

Base-induced hydrogen (H2) gas evolution in the nitric oxide monoxygenation reaction.

As a radical species, nitric oxide (NO) has attracted great interest from the scientific community due to its major role in various physiological processes such as neurotransmission, vascular regulation, platelet disaggregation and immune responses to multiple infections.1 Nitric oxide synthase (NOS),2 and nitrite reductase (NiR)3 enzymes are involved in the biosynthesis of NO. NOSs produce NO by the oxidation of the guanidine nitrogen in l-arginine.4 However, in mammals and bacteria, NO2 is reduced to NO by NiRs in the presence of protons, i.e., NO2 + e + 2H+ → NO + H2O.5 Biological dysfunctions may cause overproduction of NO, and being radical it leads to the generation of reactive nitrogen species (RNS), i.e., peroxynitrite (PN, OONO)6 and nitrogen dioxide (˙NO2),7 upon reaction with reactive oxygen species (ROS) such as superoxide (O2˙),8 peroxide (H2O2),9 and dioxygen (O2).10 Hence, it is essential to maintain an optimal level of NO. In this regard, nitric oxide dioxygenases (NODs)11 are available in bio-systems to convert excess NO to biologically benign nitrate (NO3).12NO2 + FeII + H+ ↔ NO + FeIII + OH1[M–NO]n + 2OH → [M–NO2](n−2) + H2O2NOD enzymes generate NO3 from NO;11b,12−13 however, the formation of NO2 from NO is still under investigation. Clarkson and Bosolo reported NO2 formation in the reaction of CoIII-NO and O2.14 Nam and co-workers showed the generation of CoII-NO2 from CoIII-NO upon reaction with O2˙.15 Recently, Mondal and co-workers reported NO2 formation in the reaction of CoII-NO with O2.16 Apart from cobalt, the formation of CuII-NO2 was also observed in the reaction of CuI-NO and O2.17 For metal-dioxygen adducts, i.e., CrIII-O2˙ and MnIV-O22−, NOD reactions led to the generation of CrIII-NO2 (ref. 18) and MnV Created by potrace 1.16, written by Peter Selinger 2001-2019 O + NO2,19 respectively. However, the NOD reaction of FeIII-O2˙ and FeIII-O22− with NO and NO+, respectively, generated FeIII-NO3via FeIV Created by potrace 1.16, written by Peter Selinger 2001-2019 O and ˙NO2.20 Ford suggested that the reaction of ferric-heme nitrosyl with hydroxide leads to the formation of NO2 and H+.12 Lehnert and co-workers reported heme-based Fe-nitrosyl complexes21 showing different chemistries due to the FeII-NO+ type electronic structures. On the other hand, Bryan proposed that the one-electron reduction of NO2 to NO in ferrous heme protein is reversible (eqn (1)).22 Also, it is proposed that excess NO in biological systems is converted to NO2 and produces one equivalent of H+ upon reaction with ˙OH.23 Previously reported reactivity of M–NOs of Fe24 with OH suggested the formation of NO2 and one equivalent of H+, where H+ further reacts with one equivalent of OH and produces H2O (eqn (2)).25Here in this report, we explore the mechanistic aspects of nitric oxide monooxygenation (NOM) reactions of the CoIII-nitrosyl complex, [(12TMC)CoIII(NO)]2+/{Co(NO)}8 (1),15,26 bearing the 12TMC ligand (12TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) with mono-oxygen reactive species (O2−, OH and H2O) (Scheme 1). Complex 1 reacts with the base (OH, tetrabutylammonium hydroxide (TBAOH)/or NaOH in the presence of 15-crown-5 as the OH source) and generates the corresponding CoII-nitrito complex, [(12TMC)CoII(NO2)]+ (3), with the evolution of hydrogen gas (H2) via the formation of a plausible N-bound Co-nitrous acid intermediate ([Co-NOOH]+, 2) in CH3CN at 273 K (Scheme 1, reaction (I)). Also, when 1 reacts with the oxide (O2− or Na2O in the presence of 15-crown-5), it generates the CoII-nitrito complex (3) via a probable CoI-nitro, [(12TMC)CoI(NO2)] (4), intermediate (Scheme 1, reaction (II)); however, 1 does not react with water (Scheme 1, reaction (III)). Mechanistic investigations using 15N-labeled-15NO, D-labeled-NaOD and 18O-labelled-18OH demonstrated, unambiguously, that the N and O-atoms in the NO2 ligand of 3 resulted from NO and OH moieties; however, the H-atoms of H2 are derived from OH. To the extent of our knowledge, the present work reports the very first systematic study of CoIII-nitrosyl complex reactions with H2O, OH and O2−. This new finding presents an alternative route for NO2 generation in biosystems, and also illustrates a new pathway of H2 evolution, in addition to the reported literature.12,27Open in a separate windowScheme 1Nitric oxide monooxygenation (NOM) reactions of cobalt-nitrosyl complex (1) in the presence of a base (OH), sodium oxide (Na2O) and water (H2O).To further explore the chemistry of [(12TMC)CoIII(NO)]2+ (1),15,26 and the mechanistic insights of NOM reactions, we have reacted it with a base (OH), an oxide (O2−), and water (H2O). When complex 1 was reacted with TBAOH in CH3CN, the color of complex 1 changed to light pink from dark pink. In this reaction, the characteristic absorption band of 1 (370 nm) disappears within 2 minutes (Fig. 1a; ESI, Experimental section (ES) and Fig. S1a), producing a CoII-nitrito complex, [(12TMC)CoII(NO2)]+ (3), with H2 (Scheme 1, reaction (Ib)), in contrast to the previous reports on base induced NOM reactions (eqn (2)).12,25,28 The spectral titration data confirmed that the ratio-metric equivalent of OH to 1 was 1 : 1 (ESI, Fig. S1b). 3 was determined to be [(12TMC)CoII(NO2)](BF4) based on various spectroscopic and structural characterization experiments (vide infra).15,26bOpen in a separate windowFig. 1(a) UV-vis spectral changes of 1 (0.50 mM, black line) upon addition of OH (1 equiv.) in CH3CN under Ar at 273 K. Black line (1) changed to red line (3) upon addition of OH. Inset: IR spectra of 3-14NO2 (blue line) and 3-15NO2 (red line) in KBr. (b) ESI-MS spectra of 3. The peak at 333.2 is assigned to [(12TMC)CoII(NO2)]+ (calcd m/z 333.1). Inset: isotopic distribution pattern for 3-14NO2 (red line) and 3-15NO2 (blue line).The FT-IR spectrum of 3 showed a characteristic peak for nitrite stretching at 1271 cm−1 (CoII-14NO2) and shifted to 1245 cm−1 (CoII-15NO2) when 3 was prepared by reacting 15N-labeled NO (CoIII-15NO) with OH (Inset, Fig. 1a and Fig. S2). The shifting of NO2 stretching (Δ = 30 cm−1) indicates that the N-atom in the NO2 ligand is derived from CoIII-15NO. The ESI-MS spectrum of 3 showed a prominent peak at m/z 333.2, [(12TMC)CoII(14NO2)]+ (calcd m/z 333.2), which shifted to 334.2, [(12TMC)CoII(15NO2)]+ (calcd m/z 334.2), when the reaction was performed with CoIII-15NO (Inset, Fig. 1b; ESI, Fig. S3a); indicating clearly that NO2 in 3 was derived from the NO moiety of 1. In addition, we have reacted 1 with Na18OH (ES and ESI), in order to follow the source of the second O-atom in 3-NO2. The ESI-MS spectrum of the reaction mixture, obtained by reacting 1 with Na18OH, showed a prominent peak at m/z 335.2, [(12TMC)CoII(18ONO)]+ (calcd m/z 335.2), (SI, Fig. S3b) indicating clearly that NO2 in 3 was derived from 18OH. The 1H NMR spectrum of 3 did not show any signal for aliphatic protons of the 12TMC ligand, suggesting a bivalent cobalt center (Fig. S4).26b Furthermore, we have determined the magnetic moment of 3, using Evans'' method, and it was found to be 4.62 BM, suggesting a high spin Co(ii) metal center with three unpaired electrons (ESI and ES).29 The exact conformation of 3 was provided by single-crystal X-ray crystallographic analysis (Fig. 2b, ESI, ES, Fig. S5, and Tables T1 and T2) and similar to that of previously reported CoII-NO2/MII-NO2.15,26b Also, we have quantified the amount of nitrite (90 ± 5%), formed in the above reaction, using the Griess reagent (ESI, ES, and Fig. S6).Open in a separate windowFig. 2Displacement ellipsoid plot (20% probability) of 3 at 100 K. Disordered C-atoms of the TMC ring, anion and H-atoms have been removed for clarity.As is known from the literature, a metal-nitrous acid intermediate may form either by the reaction of a metal-nitrosyl with a base27 or by the metal-nitrite reaction with an acid (nitrite reduction chemistry);26b however, the products of both the reactions are different. Here, for the first time, we have explored the reaction of CoIII-nitrosyl (1) with a base. In this reaction, it is clear that the formation of CoII-nitrito would be accomplished by the release of H2 gas via the generation of a transient N-bound [Co-(NOOH)]+ intermediate (Scheme 2, reaction (II)). The formation of CoII-NO2 (3) from the [Co-(NOOH)]+ intermediate is likely to proceed by either (i) homolytic cleavage of the O–H bond and release of H2via the proposed CoIII-H transient species (CoIII-H = CoII + 1/2H2)30 (Scheme 2, reaction (III)), as reported in previous literature where the reduced cobalt, in a number of different ligand environments, is a good H+ reduction catalyst and generates H2 gas via a CoIII-H intermediate31 or (ii) heterolytic cleavage of the O–H bond and the formation of CoI-NO2 + H+.27 In the present study, we observed the formation of 3 and H2via the plausible homolytic cleavage of the NOO–H moiety of 2 as shown in Scheme 2, in contrast to the previous reports on base-induced reactions on metal-nitrosyls (eqn (3)).27 Taking together both possibilities, (i) is the most reasonable pathway for the NOM reaction of complex 1 in the presence of a base (as shown in Scheme 2, reaction (III)). And the reaction is believed to go through a CoIII-H intermediate as reported previously in CoI-induced H+ reduction in different ligand frameworks and based on literature precedence, we believe that complex 1 acts in a similar manner.31Open in a separate windowScheme 2NOM reaction of complex 1 in the presence of OH, showing the generation of CoII-nitrito (3) and H2via a Co(iii)-hydrido intermediate.In contrast to an O-bound CoII-ONOH intermediate, where N–O bond homolysis of the ON-OH moiety generates H2O2 (Scheme 2, reaction (IV)),26b the N-bound [Co-(NOOH)]+ intermediate decomposes to form NO2 and a Co(iii)-H transient species, arising from β-hydrogen transfer from the NOO–H moiety to the cobalt-center (Scheme 2, reaction (II)).30a,c,32 The Co(iii)-hydrido species may generate H2 gas either (a) by its transformation to the Co(ii)-nitrito complex (2) and H2 gas as observed in the case of CoIII-H intermediate chemistry30a,c,e−g as proposed in the chemistry of the CoI complex with H+ reduction31 and other metal-hydrido intermediates32 and also explained in O2 formation in PN chemistry17,33 or (b) by the reacting with another [Co-(NOOH)]+ intermediate (Scheme 2, reaction (III)).Furthermore, we have confirmed the H2 formation in the NOM reaction of 1 with OH by headspace gas mass spectrometry (Fig. 3a). Also, carrying out the reaction of 1 with NaOD leads to the formation of the [Co-(NOOD)]+ intermediate, which then transforms to a CoIII-D transient species. Further, as described above, the CoIII-D species releases D2 gas, detected by headspace gas mass spectrometry (Fig. 3b), which evidently established that H2 gas formed in the reaction of 1 with OH. In this regard, we have proposed that in the first step of this reaction, the nucleophilic addition of OH to {Co-NO}8 generates a transient N-bound [Co-(NOOH)]+ intermediate that is generated by an internal electron transfer to CoIII (Scheme 2, reaction (I)). By following the mechanism proposed in the case of CoIII-H,30a−c O2,15 and H2O2(ref. 26b) formation, we have proposed the sequences of the NOM reaction of 1, which leads to the generation of CoII-nitrito and H2 (Scheme 2, reaction (I)–(III) and Scheme 3). In the second step, O–H bond homolytic cleavage generates a CoIII-H transient species + NO2via a β-hydrogen elimination reaction of the [Co-(NOOH)]+ intermediate.32 The CoIII-H intermediate may undergo the following reactions to generate H2 gas and CoII-nitrito either (a) by the natural decomposition of the CoIII-H transient species to generate H2,30a,c,e−g or (b) by the H-atom abstraction from another [Co-(NOOH)]+ intermediate (Scheme 3). Also, to validate our assumption that the reaction goes through a plausible N-bound [Co-(NOOH)]+ intermediate followed by its transformation to the CoIII-H species (vide supra), we have performed the reaction of 1 with NaOH/NaOD (in 1 : 1 ratio). In this reaction, we have observed the formation of a mixture of H2, D2, and HD gases, which indicates clearly that the reaction goes through the formation of CoIII-H and CoIII-D transient species via the aforementioned mechanism (Fig. 3c). This is the only example where tracking of the H atoms has confirmed the H2 generation from an N-bound NOO–H moiety as proposed for H2 formation from CoIII-H.30Open in a separate windowFig. 3Mass spectra of formation of (a) H2 in the reaction of 1 (5.0 mM) with NaOH (5.0 mM), (b) D2 in the reaction of 1 (5.0 mM) with NaOD (5.0 mM), (c) D2, HD, and H2 in the reaction of 1 (5.0 mM) with NaOD/NaOH (1 : 1), and (d) H2 in the reaction of 1 (5.0 mM) with NaOH in the presence of 2,4 DTBP (50 mM).Open in a separate windowScheme 3NOM reaction of complex 1 in the presence of OH, showing the different steps of the reaction.While, we do not have direct spectral evidence to support the formation of the transient N-bound [Co-(NOOH)]+ intermediate and its decomposition to the CoIII-H transient species via β-hydrogen transfer from the NOOH moiety to the cobalt center, support for its formation comes from our finding that the reactive hydrogen species can be trapped by using 2,4-di-tert-butyl-phenol (2,4-DTBP).34 In this reaction, we observed the formation of 2,4-DTBP-dimer (2,4-DTBP-D, ∼67%) as a single product (ESI, ES, and Fig. S7). This result can readily be explained by the H-atom abstraction reaction of 2,4-DTBP either by [Co-(NOOH)]+ or CoIII-H, hence generating a phenoxyl-radical and 3 with H2 (Fig. 3d and Scheme 2, reaction (a)). Also, we have detected H2 gas formation in this reaction (ESI, ES, and Fig. 3d). In the next step, two phenoxyl radicals dimerized to give 2,4-DTBP-dimer (Scheme 2c, reaction (II)). Thus, the observation of 2,4-DTBP-dimer in good yield supports the proposed reaction mechanism (Scheme 2, reaction (a) and (b)). Further, the formation of 2,4 DTBP as a single product also rules out the formation of the hydroxyl radical as observed in the case of an O-bound nitrous acid intermediate.26bFurthermore, we have explored the NOM reactivity of 1 with Na2O/15-crown-5 (as the O2− source) and observed the formation of the CoII-nitrito complex (3) via a plausible CoI-nitro (4) intermediate (Scheme 1, reaction (IIa); also see the ESI and ES); however, 1 was found to be inert towards H2O (Scheme 1, reaction (III); also see the ESI, ES and Fig. S8). The product obtained in the reaction of 1 with O2− was characterized by various spectroscopic measurements.15,26b The UV-vis absorption band of 1 (λmax = 370 nm) disappears upon the addition of 1 equiv. of Na2O and a new band (λmax = 535 nm) forms, which corresponds to 3 (ESI, Fig. S9). The FT-IR spectrum of the isolated product of the above reaction shows a characteristic peak for CoII-bound nitrite at 1271 cm−1, which shifts to 1245 cm−1 when exchanged with 15N-labeled-NO (15N16O) (ESI, ES, and Fig. S10), clearly indicating the generation of nitrite from the NO ligand of complex 1.26b The ESI-MS spectrum recorded for the isolated product (vide supra) shows a prominent ion peak at m/z 333.1, and its mass and isotope distribution pattern matches with [(12-TMC)CoII(NO2)]+ (calc. m/z 333.1) (ESI, Fig. S11). Also, we quantified the amount of 3 (85 ± 5%) by quantifying the amount of nitrite (85 ± 5%) using the Griess reagent test (ESI, ES, and Fig. S6).In summary, we have demonstrated the reaction of CoIII-nitrosyl, [(12-TMC)CoIII(NO)]2+/{CoNO}8 (1), with mono-oxygen reactive species (O2−, OH and H2O) (Scheme 1). For the first time, we have established the clear formation of a CoII-nitrito complex, [(12TMC)CoII(NO2)]+ (3), and H2 in the reaction of 1 with one equivalent of OHvia a transient N-bound [Co-(NOOH)]+ (2) intermediate. This [Co-(NOOH)]+ intermediate undergoes the O–H bond homolytic cleavage and generates a CoIII-H transient species with NO2, via a β-hydrogen elimination reaction of the [Co-(NOOH)]+ intermediate, which upon decomposition produces H2 gas. This is in contrast to our previous report, where acid-induced nitrite reduction of 3 generated 1 and H2O2via an O-bound CoII-ONOH intermediate.26b Complex 1 was found to be inert towards H2O; however, we have observed the formation of 3 when reacted with O2−. It is important to note that H2 formation involves a distinctive pathway of O–H bond homolytic cleavage in the [Co-(NOOH)]+ intermediate, followed by the generation of the proposed CoIII-H transient species (CoII + 1/2H2)30 prior to H2 evolution as described in CoI chemistry with H+ in many different ligand frameworks.31 The present study is the first-ever report where the base induced NOM reaction of CoIII-nitrosyl (1) leads to CoII-nitrito (3) with H2 evolution via an N-bound [Co-(NOOH)]+ intermediate, in contrast to the chemistry of O-bound CoII-ONOH26b, hence adding an entirely new mechanistic insight of base induced H2 gas evolution and an additional pathway for NOM reactions.  相似文献   

5.
The bicyclic tetrahydro-1,2-oxazine subunit of gliovirin is synthesized through a diastereoselective copper-catalyzed cyclization of an N-hydroxyamino ester. Oxidative elaboration to the fully functionalized bicycle was achieved through a series of mild transformations. Central to this approach was the development of the first catalytic, enantioselective propargylation of an oxime to furnish a key N-hydroyxamino ester intermediate.

The bicyclic tetrahydro-1,2-oxazine subunit of gliovirin is synthesized through a diastereoselective copper-catalyzed cyclization of an N-hydroxyamino ester.

The fungal secondary metabolites gliovirin (2)1 and pretrichodermamides A (3)2 and E (4)3 are disulfide antibiotics that possess an unusual tetrahydro-1,2-oxazine (THO) core (Scheme 1). In addition to 2–4, several related oxazine natural products have been isolated, including the monothiolated peniciadametizine B (5);4 however, these oxazine-containing natural products are rare relative to the biosynthetically related diketopiperazine natural products, hundreds of which have been isolated to date.5 In addition to their oxazine cores, 2–4 are unusual in that their disulfide linkages are joined to the carbon framework at C4 and C12, in contrast to the more common epipolythiodiketopiperazines (ETPs) such as gliotoxin (1).6 These fungal metabolites are proposed to be formed through thiolation of simple cyclic dipeptides followed by oxidative elaboration of the peripheral functionality.7 Perhaps because of the synthetic challenge posed by the combined oxazine and disulfide motifs, there have been no syntheses of gliovirin (2) or the related compounds 3 and 4 to date.Open in a separate windowScheme 1PTP isomerism: gliovirin and related natural products.Whereas there are no syntheses of 2, syntheses of related dihydro-1,2-oxazine (DHO) natural products, including trichodermamide A (6), have been reported by the groups of Joullié,8 Zakarian,9 and Larionov.10 These efforts relied upon cycloaddition chemistry or pericyclic rearrangement to install the DHO cores. As part of our larger program targeting the synthesis of polysulfide natural products,11,12 we envisioned a distinct approach to 2 that would involve late-stage diketopiperazine and disulfide formation, thereby reducing the synthetic challenge to that of preparing key THO 7 (Scheme 2). Oxazine 7 was expected to be accessible from 8avia epoxidation, desaturation, and functional group interconversion.Open in a separate windowScheme 2Retrosynthetic analysis of tetrahydro-1,2-oxazine 7.In a key synthetic step, the bicyclic THO 7 would be constructed by an intramolecular oxidative cyclization of N-hydroxydihydrophenylalanine derivative 10. For the preparation of 10, we considered two approaches: (1) N-oxidation of the corresponding dihydrophenylalanine 9, or (2) initial installation of the N–O bond followed by construction of the cyclohexan-1,3-diene from the alkyne of 11a. Given concerns about potential challenges of N-oxidation in the presence of the sensitive 1,3-cyclohexadiene motif, we elected to pursue a route where 10 would be accessed from α-propargyl N-hydroxyamino acid 11a by an enyne metathesis reaction.Having identified 11a as an intermediate on route to 7, a method to prepare this compound in enantioenriched form was desired. The most direct route to 11a was envisioned to be an enantioselective propargylation of N-siloxyglyoxalate 12 (see Table 1). However, no examples of catalytic asymmetric addition of allyl nor propargyl nucleophiles to similar oxime substrates were found in the literature. The most promising lead was from Hanessian and coworkers, in which an excess of a chiral allylzinc reagent was added to an oxime.13 However, this method had not been extended to the corresponding propargylation.Optimization of Cu-catalyzed oxime propargylationa
EntryB(OR2)2[Cu], LYieldb (%)eec (%)
1Bgly (13a)Cu(CO2i-Pr)2, L1d263
2Bgly (13a)Cu(MeCN)4BF4, L2d772
3Bgly (13a)Cu(MeCN)4BF4, L3d7030
4Bgly (13a)Cu(MeCN)4BF4, L4d1180
5Bgly (13a)Cu(MeCN)4BF4, L5d2482
6Bgly (13a)Cu(MeCN)4BF4, L53095
7Bgly (13a)[Cu(L5)(MeCN)2]BF45092
8Bneo (13b)e[Cu(L5)(MeCN)2]BF48796
Open in a separate windowaReactions conducted under inert atmosphere on 0.05 mmol scale for 24 h.bDetermined by 1H NMR versus an internal standard.cDetermined by SFC using chiral stationary phase.dLi(Ot-Bu) (9.5 mol%) was added to the reaction.e2.0 equivalents used in place of 1.4 equivalents.Although there was no direct precedent for the catalytic asymmetric propargylation of oximes, we were inspired to pursue this approach by recent studies describing Cu-catalyzed asymmetric propargylation of imines.14–16 We began by investigating the ability of chiral Cu complexes to catalyze the reaction between glyoxalate-derived oxime 12b and allenyl boronate 13a. Bidentate bisphosphines gave promising levels of enantioinduction, although the reactions produced 11b in very low yield (Table 1, entries 1–2).17 In comparison, monodentate phosphoramidite ligands (e.g.L3) provided 11b in improved yield, but with modest enantioselectivity (entry 3).We hypothesized that the improved yield observed with the use of phosphoramidite ligands resulted from their increased ability to act as π-acceptors.18 It was envisioned that electron-deficient bis-phosphines would combine the benefits of greater π-acceptor ability to increase catalyst turnover while retaining the conformational rigidity of a bidentate ligand to promote asymmetric induction.19 Consistent with this hypothesis, fluorinated, commercially available, bisphosphines including DIFLUORPHOS (L4, entry 4) and BTFM-GARPHOS (L5, entry 5) both gave higher yields of 11b, while also improving the enantioinduction.In contrast to many metal-catalyzed cross-coupling reactions of boronates, a series of control experiments demonstrated that co-catalytic base was not required, and in fact, omitting base from the reaction led to an improvement in yield and ee (entry 6, Table 1). Use of neopentyl boronate 13b further improved the yield. Although ester 12b was used for the optimization process (due to the aryl UV chromophore aiding ee assay development), for the purpose of the synthesis, ethyl ester 11a was accessed in similarly high yield and ee from N-siloxyglyoxalate 12a (Scheme 3).Open in a separate windowScheme 3Realization of proposed oxidative cyclization. aenantiomeric excess determined from 14, following benzoylation, by SFC with a chiral stationary phase.Concomitant to the development of the enantioselective propargylation shown in Table 1, we investigated the elaboration of compound 14, as a racemate, to oxazine 7. Initial attempts to generate the desired 1,3-cyclohexadiene 15a through enyne metathesis proceeded in low yield due to catalyst deactivation and alkyne oligomerization; however, slow addition of 14 to a solution of 1,5-cyclooctadiene and second generation Hoveyda–Grubbs catalyst (Mes-HGII) in benzene produced the desired product, 15, in excellent yield (Scheme 3).20With access to N-hydroxydihydrophenylalanine derivative 15a, we investigated the formation of the THO motif by an oxidative cyclization. The intramolecular oxidative radical addition of hydroxamic acids to generate cyclic hydroxamates was first observed by Perkins21 and later systematically studied by Alexanian.22–24 Furthermore, during the course of our work, the intermolecular addition of phthalimide N-oxyl radical (PINO) to activated alkenes was reported to be initiated by base metal catalysis, visible light, or conventional radical initiators.25–28 While this reactivity encouraged us, there were three issues that remained uncertain: (a) the regioselectivity of cyclization across the diene (i.e. 5-exo vs. 6-endo); (b) the diastereoselectivity of the C–O bond formation with respect the adjacent stereocenter; and (c) whether N-alkylhydroxamic acids would engage in similar reactivity previously observed in N-arylhydroxamic acids. With our cyclization substrate 15a in hand we found that following in situ deprotection, silica-mediated autooxidation provided a mixture of allylic hydroperoxides 16 which could be converted to the corresponding enone 8 through a Kornblum–DeLaMare work-up.29 Under these conditions, the hydroxamic acid exhibits good selectivity for 6-endo-trig cyclization, presumably due to the stability of the intermediate allylic radical.The desired syn-diastereomer 8a was formed as the major product, albeit in modest diastereoselectivity. Eager to improve the dr, we screened a series of copper-diamine catalysts previously studied as copper monooxygenase mimics.30 To our delight, Cu(TMEDA)2(BF4)2 not only improved the diastereoselectivity, but also catalyzed the reaction at lower temperatures in higher combined yield of the 6-endo products.31 When an N-acetylhydroxamic acid (8b) is subjected to the optimal conditions, the dr improves to 13 : 1. The selectivity for the syn diastereomer in these reactions is consistent with related conformationally-controlled selectivity in cyclic amides,32 where the α-substituent adopts a pseudo-axial disposition to alleviate developing A1,3 strain in the chair-like transition state for cyclization.33 Although THO 8b (R = Ac) was formed with higher diastereoselectivity, this compound was unstable to further elaboration. As a result, the more stable N-benzoyl THO 8a was used for further elaboration to fully functionalized 22.With access to the desired bicyclic THO, our efforts turned to parlaying the newly installed enone to the oxidation pattern found in 2. To our dismay, we found that traditional nucleophilic epoxidation conditions (e.g. NaOH, H2O2) led to complete decomposition of enone 8a, while other oxidants, such as DMDO, returned starting material. After an extensive survey of the literature, we found promising reactivity using hydrogen peroxide and sodium bicarbonate, which presumably generates a peroxycarbonate species in situ.34 Further optimization found that use of sodium hypochlorite as the oxidant, in combination with catalytic CrCl3, provided 17 in good yield as a single diastereomer.Initial attempts to desaturate epoxy ketone 17 by using classical Saegusa–Ito conditions or Tsuji-type oxidations of the corresponding silyl enol ethers were unsuccessful. In contrast, ketone 17 underwent smooth desaturation using conditions adapted from a recent report by White and coworkers,35 in which a Lewis acidic palladium catalyst enables in situ enolization and α-palladation. Under these conditions, epoxy enone 18 can be isolated directly in 67% yield.At this stage, elaboration of 18 to 20b was initially envisioned to proceed by diastereoselective ketone reduction followed by 1,3-transposition of the allylic alcohol (Scheme 4).36 Unfortunately, efforts to effect this strategy, or related approaches involving alkene formation and allylic oxidation, proved unsuccessful. As an alternate approach, we envisioned that a bis-epoxyketone (i.e.19), which could potentially undergo chemoselective Wharton rearrangement to the desired allylic alcohol. To this end, treatment of enone 18 with sodium hypochlorite in 1,4-dioxane provided bis-epoxy enone 19 in high yield as a single diastereomer. Addition of 1.0 equiv. anhydrous hydrazine in the presence of catalytic benzoic acid with careful control of the temperature gave a mixture of isomers 20a and 20b in 33% yield. Unfortunately, efforts to further improve the efficiency of this reaction were unfruitful. Nonetheless, when the mixture of isomers was treated with the bulky, Lewis acidic silylating reagent TBSOTf, the corresponding secondary allylic silyl ether was as isolated exclusively.37 When unreacted 20a, recovered from the reaction mixture, was subjected to neutral florisil purification a mixture of 20a and 20b were recovered. Taken together, these data might suggest that 20a and 20b can interconvert through an unusual vinylogous Payne rearrangement under Lewis acidic conditions.38 Finally, chemoselective cleavage of the N-benzoyl protecting group revealed 22,39 our desired substrate for subsequent late stage diketopiperazine formation and thiolation.Open in a separate windowScheme 4Synthesis of oxazine 22.  相似文献   

6.
Radical electrons tend to localize on individual molecules, resulting in an insulating (Mott–Hubbard) bandgap in the solid state. Herein, we report the crystal structure and intrinsic electronic properties of the first single crystal of a π-radical metal, tetrathiafulvalene-extended dicarboxylate (TED). The electrical conductivity is up to 30 000 S cm−1 at 2 K and 2300 S cm−1 at room temperature. Temperature dependence of resistivity obeys a T3 power-law above T > 100 K, indicating a new type of metal. X-ray crystallographic analysis clarifies the planar TED molecule, with a symmetric intramolecular hydrogen bond, is stacked along longitudinal (the a-axis) and transverse (the b-axis) directions. The π-orbitals are distributed to avoid strong local interactions. First-principles electronic calculations reveal the origin of the metallization giving rise to a wide bandwidth exceeding 1 eV near the Fermi level. TED demonstrates the effect of two-dimensional stacking of π-orbitals on electron delocalization, where a high carrier mobility of 31.6 cm2 V−1 s−1 (113 K) is achieved.

The molecular arrangement that enables metallic conduction in a single-component pure organic crystal is revealed by single-crystal X-ray diffraction.

Organic molecular solids are typically insulating due to their paired electrons in spatially localized s- and p-orbitals. The concept of charge-transfer (CT) between donor and acceptor1 enabled the development of conducting molecular complexes (salts) including semiconducting perylene-bromine,2 metallic tetrathiafulvalene (TTF)-tetracyano-p-quinodimethane (TCNQ),3 and polyacethylene doped with halogen molecules.4 A different strategy was proposed in the 1970s based on organic radicals with an open-shell electronic structure.5 π-Radicals such as neutral-,6 fully-conjugated7 and zwitterionic (betainic)8 molecules, with an unpaired electron in their singly occupied molecular orbital (SOMO), offered potential candidates. However, all these π-radicals were insulators or semiconductors with a finite bandgap, which is due to the SOMO being localized on an individual molecule. In the Mott–Hubbard model,9 the case of the π-radical solids can be described by the on-site Coulomb repulsion U being larger than the electronic bandwidth W (U/W > 1), in contrast to U/W < 1 in molecular metals like CT metal systems (Fig. 1a).Open in a separate windowFig. 1(a) Schematic representation of the electronic band structure of Mott–Hubbard insulators (left) and possible molecular metals (right), respectively. Solids formed from typical π-radicals possess large on-site Coulomb repulsion U compared with the electronic bandwidth W, resulting a finite bandgap (left). This requires a new mechanism to expand W and overcome U to achieve a metallic state at ambient pressure in π-radical crystals. (b) Molecular structure of the zwitterionic radical, tetrathiafulvalene-extended dicarboxylate (TED) with a symmetric intramolecular hydrogen bond.A straightforward approach to realize high conductivity in π-radical systems is to enhance the intermolecular interaction by applying high pressure.10 Bisdithiazolyl radical crystal achieved W ∼ 1 eV near the Fermi level and the room temperature conductivity σRT = 2 S cm−1 under 11 GPa pressure.10c An alternative route is to decrease the interatomic spacing by incorporating a metal ion. Introduction of a semimetal Se and intermolecular hydrogen bonding in a donor-type radical succeeded to improve a conductivity to σRT = 19 S cm−1 but still required high pressure over 1 GPa for breaking its insulating character.10d An organometallic compound with a transition metal, [Ni(tmdt)2], by contrast, is known to form a three-dimensional (3D) Fermi surface with W = 0.48 eV and metallic conduction with σRT = 400 S cm−1 at ambient pressure.11 A breakthrough concept for expanding W at ambient pressure is desired for achieving metallization in pure organic π-radicals.Tetrathiafulvalene-extended dicarboxylate (TED) is an organic air-stable zwitterionic radical (Fig. 1b),12 which was designed based on carrier generation induced by a stably-introduced protonic defect (–H+) in hydrogen-bonding molecules without adopting CT between multiple molecules.13 A polycrystalline film of TED exhibited metallic conduction at ambient pressure, but the mechanism has not been clarified yet due to lack of single crystal information.12 Herein, we report the first crystal structure and intrinsic electronic properties of the recently grown single crystal TED. Structural analysis and quantum chemical simulations based on the single crystal reveal the origin of its metallic behavior.  相似文献   

7.
Redox-active benzimidazolium sulfonamides as thiolating reagents have been developed for reductive C–S bond coupling. The IMDN-SO2R reagent provides a bench-stable cationic precursor to generate a portfolio of highly active N–S intermediates, which can be successfully applied in cross-electrophilic coupling with various organic halides. The employment of an electrophilic sulfur source solved the problem of catalyst deactivation and avoided odorous thiols, featuring practical conditions, broad substrate scope, and excellent tolerance.

Redox-active benzimidazolium sulfonamides as thiolating reagents have been developed for reductive C–S bond coupling.

The high frequency of sulfur-containing moieties in natural products,1 bioactive molecules,2 pharmaceuticals,3 organic materials,4 fragrances5 and asymmetric catalysis as chiral catalysts/ligands6 has triggered the best endeavours for the selective construction of C–S bonds. The conventional cross-coupling of thiols with aryl halides generally relies on the conversion of mercaptans to thiolates by means of transition-metal catalysis7 (such as Pd,8 Cu,9 and Ni10) and other metals,11 although these efforts were plagued by several drawbacks. The strong coordination of thiolates to metals often leads to catalyst deactivation and displays low efficiencies. Therefore, high catalyst loading, specific ligands, excessive heating and strong bases are often required to facilitate this transformation (Scheme 1a, left). Recent development using photochemical12 and electrochemical13 induced thiol radicals as a sulfur source could avoid the problem of catalyst poisoning, although restricted substrate scope was displayed (Scheme 1a, middle). Despite the progress made for C–S bond construction,14 the longstanding issues that exist in the above-mentioned strategies should not be overlooked.Open in a separate windowScheme 1Origin of the reaction design. (a) C–S formation from organic halides. (b) The preparation of the electrophilic thiolating reagent (R–S+). (c) This work: cationic active reagent for cross electrophilic coupling.Compared to classical cross-coupling processes, the nickel-catalyzed reductive cross-coupling of two electrophilic partners has emerged as a powerful tool for the replacement of air- and moisture-sensitive organometallic reagents.15 The cross electrophilic coupling for the construction of C–S bonds is more challenging due to the lack of sulfur sources and homo-coupling of organic halides (Scheme 1a, right). Several examples of reductive thiolation16 have been described using thiol derivatives as S+ sources (Scheme 1b). We speculated that readily accessible sulfonyl chloride as an electrophilic sulfur source could avoid the use of highly toxic thiols and significantly the substrate scope.17 However, the direct reduction of sulfonyl chloride inevitably resulted in dimerization to disulfide.17b Putatively, activated by an electron-deficient heterocycle such as imidazole, sulfonyl chloride could be assembled into a bench-stable cationic reagent (Scheme 1b). Benzimidazolium sulfonamides would be better electron acceptors18 and easily reduced by PPh3 to generate a highly reactive N–S+ species in situ. The positive charge of this intermediate is delocalized on both nitrogens of imidazole. Followed by the cleavage of the weak N–S bond (BDE ≈ 70 kcal mol−1),19 the electrophilic sulfur species can be captured by metal catalysts for cross-coupling. Herein, we have described a redox-active benzimidazolium sulfonamide reagent (IMDN-SO2R) for Ni-catalyzed reductive coupling of organic halides for a portfolio of C(sp)–S, C(sp2)–S and C(sp3)–S bond formations (Scheme 1c). This strategy avoids the formation of disulfide by-products and the use of organometallic reagents, which facilitates purification and enhances the functionality tolerance.To determine the suitable conditions for the reductive coupling of the cationic reagent with organic halides, we first studied the reductive thiolation of p-iodo-methoxybenzene (2a) and 1a (2 equiv.) with a survey of Ni catalysts in the presence of dtbbpy (20 mol%), PPh3 (2.5 equiv.), Zn powder (3.0 equiv.) and MgCl2 (2.0 equiv.) in DMA at 60 °C (Table 1). Ni(OTf)2 as a catalyst was able to promote the reductive process to afford the desired aryl thioether product 3a in 92% isolated yield (entry 1). When using Ni(cod)2, Ni(acac)2, Ni(OAc)2·4H2O and Ni(PCy3)2Cl2, lower yields were obtained (entries 2–5). Decreasing the 1a loading to 1.5 equiv., the yield of 3a reduced to 75% (entry 6). Switching 1a to a 2-phenyl substituted imidazolium sulfonamide reagent 1b, similar yields were achieved (entry 7). When decreasing both Ni(OTf)2 and dtbbpy loading to 10 mol%, the yield reduced to 75%. In the absence of Ni(OTf)2 or Zn powder, no desired product was observed (entries 9–10). Switching Zn powder to an organic reductant tetrakis-(dimethylamino)ethylene (TDAE), still a low conversion of the reaction was observed (entry 11). The results demonstrated that no organozinc reagents were generated. In the absence of the ligand, MgCl2 or PPh3, the reaction resulted in low yields, indicating that these ingredients were essential for this catalytic system (entries 12–14). Thus, the optimized conditions were selected for further investigation of the reaction scope.Optimization of the reaction conditions. Reaction condition: 2a (0.20 mmol), 1a (0.40 mmol, 2.0 equiv.), MgCl2 (2.0 equiv.), PPh3 (2.5 equiv.), Zn (3.0 equiv.), Ni(OTf)2 (20 mol%) and dtbbpy (20 mol%) in DMA (2 mL) at 60 °C under Ar. aCrude yields determined by 1H NMR spectroscopy using dibromomethane as an internal standard. bIsolated yield. dtbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine. TDAE = tetrakis(dimethylamino)ethylene
EntryVariationYielda/%EntryVariationYielda/%
1None96 (92)b810 mol% [Ni]83
2Ni(acac)2429No Ni(OTf)2nd
3Ni(cod)26310No Znnd
4Ni(OAc)2·4H2O2111TDAE for Zn21
5Ni(PCy3)2Cl25712No dtbbpy46
61.5 equiv. 1a7513No MgCl239
72.0 equiv. 1b8814No PPh320
Open in a separate windowThe generality of the reductive thiolation was evaluated under the optimized conditions (Scheme 2). A wide range of aryl iodides containing either electron-withdrawing or electron-donating functionality were tolerated, delivering products with methoxy (3a, 3c), trifluoromethoxy (3b), methyl (3d), acetyl (3e), ester (3f), boronate (3g), and phenyl (3h) groups in good to excellent yields (63–94%). 5-Iodobenzo[d][1,3]dioxole and 2-iodofluorene also furnished the corresponding adducts (3i, 3j) in 91% and 82% yields, respectively. Notably, aryl iodides bearing sensitive groups such as amine (3k) and hydroxyl (3l) were engaged in the cross-coupling to forge the C–S bond in good yields. Aryl bromides (3a, 3m) were also found compatible. The scope of the heteroaryl halide coupling partner was also explored. Various five- and six-membered heterocycles, including thiophene (3n), pyrazole (3o), quinoline (3p), carbazole (3q), indole (3r), isothiazole (3s), benzofuran (3t), benzothiophene (3u), benzothiazole (3v), pyrimidine (3w), pyrazine (3x), and pyridine (3y, 3z) derived heteroaryl bromides and iodides were treated with 1a to produce the corresponding sulfides in good yields. In the cases of relatively unreactive organic chlorides, the corresponding coupling products (3aa–3cc) could be obtained in low yields under the standard conditions. Subsequently, we assessed the scope of aryl sulfonamides. Reagents 1c–1k containing electron-withdrawing and electron-donating substitutions on the benzene ring afforded the desired products in good to excellent yields (3dd–3ll). Sterically hindered imidazolium sulfonamides 2,4,6-trimethylated 1j and 2,4,6-triisopropylated 1k showed good compatibility in this reaction to give the corresponding products 3kk and 3ll in high yields.Open in a separate windowScheme 2Substrate scope of (hetero)aryl and benzimidazolium sulfonamides. aReaction was performed at 80 °C.The more challenging aliphatic halides have also been examined with the redox-active reagent 1a (Scheme 3). Primary and secondary alkyl halides yielded alkyl sulfides (5a–5k and 5l) in good to excellent yields. No dimerization side-product was observed. Functionalities including esters (5b, 5i, and 5j), sulfide (5c), alkene (5f), acetal (5h) and ether (5k) are tolerated. Some sensitive functional groups including silyl ether (5e) and organoboronate (5g) were well tolerated, provided in 75% and 57% yields, respectively. Alkenyl halides were also tolerated to afford 7a and 7b in good yields. In addition, alkynyl bromides were employed for reductive thiolation with benzimidazolium sulfonamides 1a and 1c–1i to afford the corresponding C(sp)–S bond coupling products (9a–9h) in moderate to good yields.Open in a separate windowScheme 3Substrate scope of alkyl, alkenyl and alkynyl bromide. aNi(PCy3)2Cl2 instead of Ni(OTf)2 and without dtbbpy. b4-(Trifluoromethyl)pyridine (0.2 mmol) and THF (2 mL) were used instead of dtbbpy and DMA.To demonstrate the synthetic potential of this cross-electrophile coupling, a gram scale reaction was performed with 1a and p-iodo-methoxybenzene 2a under the standard conditions (Scheme 4a). The reductive thiolation was also applied in the late-stage modification of biologically active molecules and synthesis of pharmaceutically active molecules. d-Glucose (10a), (+)-α-tocopherol (10b), rosin amine (10c), and 17a-methyl-drostanolone-derived (10d) alkyl halides were compatible to afford thiolated products in good yields (Scheme 4b). Treating benzimidazolium sulfonamide 1n with piperazine-derived iodobenzene 11 generated the thiolated intermediate 12 and deprotection with TFA afforded anti-depressive vortioxetine 13 (ref. 20) in 50% overall yields (Scheme 4c).Open in a separate windowScheme 4Further transformations. (a) Gram-scale experiment. (b) Late-stage modification of natural products. (c) The synthesis of vortioxetine using our protocol.To investigate the mechanism for this reductive thiolation, a series of control experiments have been carried out. First, the treatment of benzimidazolium sulfonamide 1a with PPh3 furnished the key N–S+ intermediate Int-I and Ph3P = O, which were confirmed by 1H NMR, HRMS data and 31P NMR (Scheme 5a, see the ESI). A mixture of Int-I and 2a was able to afford 3a in 80% yield under the standard conditions, indicating that the reaction did go through this route (Scheme 5b). Furthermore, the key nickel-complex 14 was prepared and reacted with Int-I to furnish thioether 3d in 15% yield (Scheme 5c). Finally, sulfone 15 was used in the absence of benzimidazolium sulfonamide 1a and 2a under standard conditions. No reduced product 3a was detected, which indicates that the PPh3 reduction occurs before the cross-coupling (Scheme 5d). On the basis of the experimental results and previous reports,16c,g a plausible mechanism for the reductive thiolation of organic halides is proposed (Scheme 5e). Initially, the reduction of the Ni(ii) salt by zinc affords the active Ni(0) catalyst A, which undergoes oxidative addition into the C–X bond of organic halides to give the intermediate R–Ni(ii)X B. The following reduction of B forms R–Ni(i) intermediate C.15b,16g Then C and Int-I undergo stepwise single-electron transfer with the possibility of radical trapping within a solvent cage to afford intermediate D before the generation of R–Ni(iii)-SAr E and benzoimidazole residue 16. Finally, the reductive elimination of E furnishes the desired thioether product and Ni(i) species F which is reduced by zinc to facilitate the next catalytic cycle.Open in a separate windowScheme 5Mechanistic studies and proposed mechanism.  相似文献   

8.
9.
Ru-catalysed oxidative coupling of allylsilanes and allyl esters with activated olefins has been developed via isomerization followed by C(allyl)–H activation providing efficient access to stereodefined 1,3-dienes in excellent yields. Mild reaction conditions, less expensive catalysts, and excellent regio- and diastereoselectivity ensure universality of the reaction. In addition, the unique power of this reaction was illustrated by performing the Diels–Alder reaction, and enantioselective synthesis of highly functionalized cyclohexenone and piperidine and finally synthetic utility was further demonstrated by the efficient synthesis of norpyrenophorin, an antifungal agent.

Ru-catalysed oxidative coupling of allylsilanes and allyl esters with activated olefins has been developed via isomerization followed by C(allyl)–H activation providing efficient access to stereodefined 1,3-dienes in excellent yields.

1,3-Dienes not only are widespread structural motifs in biologically pertinent molecules but also feature as a foundation for a broad range of chemical transformations.1–14 Indeed, these conjugated dienes serve as substrates in many fundamental synthetic methodologies such as cycloaddition, metathesis, ene reactions, oxidoreduction, or reductive aldolization. It is well-understood that the geometry of olefins often influences the stereochemical outcome and the reactivity of reactions involving 1,3-dienes.15 Hence, a plethora of synthetic methods have been developed for the stereoselective construction of substituted 1,3-dienes.16–24 The past decade has witnessed a huge advancement in the field of metal-catalyzed C–H activation/functionalization.25–27 Although, a significant amount of work in the field of C(alkyl)–H and C(aryl)–H activation has been reported; C(alkenyl)–H activation has not been explored conspicuously, probably due to the complications caused by competitive reactivity of the alkene moiety, which can make chemoselectivity a significant challenge. Over the past few years, several different palladium-based protocols have been developed for C(alkenyl)–H functionalization, but the reactions are generally limited to employing conjugated alkenes, such as styrenes,28–31 acrylates/acrylamides,32–36 enamides,37 and enol esters/ethers.38,39 To date, only a few reports have appeared in the literature for expanding this reactivity towards non-conjugated olefins, which can be exemplified by camphene dimerization,40 and carboxylate-directed C(alkenyl)–H alkenylation of 1,4-cyclohexadienes.41 In 2009, Trost et al. reported a ruthenium-catalyzed stereoselective alkene–alkyne coupling method for the synthesis of 1,3-dienes.42 The same group also reported alkene–alkyne coupling for the stereoselective synthesis of trisubstituted ene carbamates.43 A palladium catalyzed chelation control method for the synthesis of dienes via alkenyl sp2 C–H bond functionalization was described by Loh et al.44 Recently, Engle and coworkers reported an elegant approach for synthesis of highly substituted 1,3-dienes from two different alkenes using an 8-aminoquinoline directed, palladium(ii)-mediated C(alkenyl)–H activation strategy.45 Allyl and vinyl silanes are known as indispensable nucleophiles in synthetic chemistry.46 Alder ene reactions of allyl silanes with alkynes are reported for the synthesis of 1,4-dienes.47 Innumerable methods are known for the preparation of both allyl and vinyl silanes48–52 but limitations are associated with many of the current protocols, which impedes the synthesis of unsaturated organosilanes in an efficient manner. Silicon-functionalized building blocks are used as coupling partners in the Hiyama reaction53 and are easily converted into iodo-functionalized derivatives (precursor for the Suzuki cross-coupling reaction), but there is little attention given for the synthesis of functionalized vinyl silanes. Herein, we report a general approach for the stereoselective synthesis of trisubstituted 1,3-dienes by the Ru-catalyzed C(sp3)–H functionalization reaction of allylsilanes (Scheme 1).Open in a separate windowScheme 1Highly stereoselective construction of 1,3-dienes.In 1993, Trost and coworkers reported an elegant method for highly chemoselective ruthenium-catalyzed redox isomerization of allyl alcohols without affecting the primary and secondary alcohols and isolated double bonds.54,55 Inspired by the potential of ruthenium for such isomerization of double bonds in allyl alcohols, we sought to identify a ruthenium-based catalytic system that can promote isomerization of olefins in allylsilanes followed by in situ oxidative coupling with an activated olefin to form substituted 1,3-dienes. We initiated our studies by choosing trimethylallylsilane 1a and acrylate 2a by using a commercially available [RuCl2(p-cymene)]2 catalyst in the presence of AgSbF6 as an additive and co-oxidant Cu(OAc)2 in 1,2-DCE at 100 °C. Interestingly, it resulted into direct formation of (2E,4Z)-1,3-diene 3aa as a single isomer in 55% yield. It is likely that this reaction occurs by C(allyl)–H activation of the π-allyl ruthenium complex followed by oxidative coupling with the acrylate and leaving the silyl group intact (Table 1). π-Allyl ruthenium complex formation may be highly favorable due to the α-silyl effect which stabilizes the carbanion forming in situ in the reaction.56 Next, the regioselective C–H insertion of vinyl silanes could be controlled by stabilization of the carbon–metal (C–M) bond in the α-position to silicon. This stability arises due to the overlapping of the filled carbon–metal orbital with the d orbitals on silicon or the antibonding orbitals of the methyl–silicon (Me–Si) bond.57 The stereochemistry of the diene was established by 1D and 2D spectroscopic analysis of the compound 3aa. To quantify the C–H activation mediated coupling efficiency, an extensive optimization study was conducted (allylsilanes followed by in situ oxidative coupling with an activated olefin to form substituted 1,3-dienes). The change of solvents from 1,2-DCE to t-AmOH, DMF, dioxane, THF or MeCN did not give any satisfactory result, rather a very sluggish reaction rate or decomposition of starting materials was observed in each case (entry 2–6).Optimization of reaction conditionsa
EntryAdditive (20 mol%)Oxidant (2 equiv.)SolventYieldb (%)
1AgSbF6Cu(OAc)2DCE55
2AgSbF6Cu(OAc)2t-AmOH10
3AgSbF6Cu(OAc)2DMF0
4AgSbF6Cu(OAc)2Dioxane8
5AgSbF6Cu(OAc)2THF21
6AgSbF6Cu(OAc)2MeCN0
7cAgSbF6Cu(OAc)2DCE35
8dAgSbF6Cu(OAc)2DCE82
9eAgSbF6Cu(OAc)2DCE45
10dAg2CO3Cu(OAc)2DCE0
11dAgOAcCu(OAc)2DCE20
12dAgSbF6DCE0
Open in a separate windowaReaction conditions: 1a (0.24 mmol), 2a (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), additive (20 mol%) and oxidant (2 equiv.) at 100 °C in a specific solvent (2.0 mL), under argon, for 16 h.bIsolated yields are of product 3aa.cThe reaction was performed at 120 °C.dThe reaction was performed at 80 °C.eThe reaction was performed at 60 °C. t-AmOH – tertiary amyl alcohol, DMF – N,N-dimethylformamide, DCE – 1,2-dichloroethane.The increase of temperature from 100 °C to 120 °C resulted in the formation of diene in lower yield (entry 7). To our delight, it was found that a substantial enhancement in the yield (82%) was observed when the reaction was performed at 80 °C (entry 8). In particular, this was found to be the best reaction condition since further lowering of the temperature led to noteworthy attenuation of the reaction rate and yield (entry 9). Interestingly, the reaction was not efficient, when AgSbF6 was replaced with other additives, such as Ag2CO3 and AgOAc. It was also observed that, co-oxidant Cu(OAc)2 is necessary for the success of this reaction (entry 12).With these optimized conditions in hand, various allyl sources and acrylates have been tested (Table 2). It was found that a variety of acrylates 2 bearing alkyl and sterically crowded cyclic substituents successfully underwent the coupling reaction with allyl silane 1a to afford corresponding silyl substituted (2E,4Z)-1,3-dienes in good yields (3aa–3af). Similarly, dimethyl benzylallylsilane 1b reacted smoothly with acrylates such as methyl, isobutyl and n-butyl to generate desired dienes 3ba, 3bb and 3bc in 83%, 85% and 82% yield respectively. Interestingly, sterically crowded, tert-butyldimethyl allylsilane 1c showed its reactivity towards the coupling reaction with n-butyl acrylate to provide required diene 3cb in 80% yield. It is worth mentioning that allylsilanes 1a and 1b also exhibited their coupling reactivity with phenyl vinyl sulfone and successfully generated corresponding 1,3-dienes 3ag and 3bg in 78% and 76% yield respectively. When tert-butyldiphenylallylsilane 1d was subjected to the coupling reaction with methyl acrylate 2a, end–end coupling product 3da was isolated in 68% yield. This may be attributed to the steric crowding offered by bulky groups on silicon which prevents allyl to vinyl isomerization.Substrate scope for oxidative coupling of allylsilanes with acrylates and vinyl sulfonesa
Open in a separate windowaReaction conditions: 1 (0.24 mmol), 2 (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), AgSbF6 (20 mol%) and Cu(OAc)2·H2O (2 equiv.) at 80 °C in 1,2-dichloroethane (2.0 mL), under argon, 16 h.bIsolated yields are of product 3. TMS – trimethylsilyl, TBDMS – tertiarybutyldimethyl silyl.To extend the substrate scope of the reaction, we next examined the scope of allylesters by employing 2a as the coupling partner. First, we carried out the coupling reaction between allyl ester derivative 4a and methyl acrylate 2a under standard conditions. To our delight, a single isomer of acetate substituted (2E,4Z)-1,3-diene 5aa was isolated with a good yield (75%) (Table 3). This result may be extremely unusual due to the weak thermodynamic driving force for the double bond migration of allyl esters and tendency of many metal catalysts to insert themselves into the C(allyl)–O bond to form a stable carboxylate complex.58 Even for unsubstituted allyl esters very few reports of double bond migrations exist.59–62 It is worth mentioning that unlike the Tsuji–Trost reaction,63–65 the C(allyl)–O bond doesn''t break to form the π-allyl palladium complex as an electrophile, instead it forms a nucleophilic π-allylruthenium complex (umpolung reactivity) keeping the acetate group intact, which further reacts with an electrophile. The stereochemistry of the diene was established by 1D and 2D spectroscopic analysis of the compound 5ga and also by comparison of spectroscopic data with those of an authentic compound.66 Next we turned our attention to expand the scope of the coupling reaction between various acrylates and allyl esters. It was found that a variety of allyl esters bearing alkyl substituents on the carbonyl carbon could provide moderate to good yields of the corresponding stereodefined (2E,4Z)-1,3,4-trisubstituted 1,3-dienes successfully. As can be seen from Table 2, alkyl substituents (4b–4d) had little influence on the yields (65–75%). Gratifyingly, we noticed that the presence of a bulky substituent in 4 also showed its viability towards the coupling reaction, albeit with modest yields (5ea & 5fa). Also, various acrylate derivatives reacted smoothly to generate the 1,3-dienes in excellent yield. A simple allyl acetate 4g reacted with a series of different acrylates 2 to afford the desired products in good yields.Substrate scope for oxidative coupling of various allyl esters with different acrylates and vinyl sulfonesa
Open in a separate windowaReaction conditions: 4 (0.24 mmol), 2 (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), AgSbF6 (20 mol%) and Cu(OAc)2·H2O (2 equiv.) at 80 °C in 1,2-dichloroethane (2.0 mL), under argon, 16 h.bIsolated yields are of product 5.Several acrylates such as methyl-, ethyl-, n-butyl-, isobutyl-, n-heptyl-, cyclohexylmethyl-, benzyl-, etc. were tested and good to very good yields of the products were obtained. Also, gram scale synthesis of 5gh (1.35 g) by the reaction of acetate 4g with 2h gave identical results in terms of yield (69%) and diastereoselectivity, indicating the robustness and practicality of this method. Markedly, a C2-symmetric diacrylate (2e) also reacted with allyl acetate to form a mono-coupled product 5ge, though in a somewhat lower yield. In contrast to the allyl esters, the coupling was not affected by the steric bulk of the acrylate substituents as depicted in Table 3. Even the borneol derivative 2j and menthol derivative 2l, which can offer considerable steric hindrance, were found to be equally effective in the formation of 5gj and 5gl in very good yields. A somewhat reduced yield of the product 5gm was observed while using phenyl acrylate (2m) perhaps due to competitive reactive sites. Interestingly, the versatility of this methodology was not restricted only to acrylates, since phenyl vinyl sulfone was also found to be equally efficient for oxidative C–H functionalization with different allyl esters and a successful C–C coupling reaction was observed in each case with moderate yield and excellent diastereoselectivity.Interestingly treatment of allylsilanes under standard reaction conditions in the absence of an acrylate coupling partner led to isomerization of various allylsilanes to afford corresponding vinylsilanes 6b–6e in excellent yields (Scheme 2a). When allylsilane 1d was subjected to isomerization in the presence of CD3CO2D, a significant amount of deuterium scrambling at the α-position (>20%) as well as at the methyl group (>45%) was observed in corresponding vinylsilane, indicating that the isomerization step is reversible and the rate determining step (Scheme 2b). It is also observed that when vinylsilane 6b was made to react with methyl acrylate 2a under standard conditions, it successfully underwent highly regioselective C–H activation and afforded coupling product 3b′a in 80% yield (Scheme 2c). This result confirms that the coupling reaction proceeds via vinyl silane intermediate 6.Open in a separate windowScheme 2Isomerization of allylsilanes and deuterium study.It is delightful to mention that diene 3aa successfully underwent the Diels–Alder reaction with N-phenyl maleimide 7 in toluene at 80 °C, to afford single isomer 8 in 70% yield which ensures the pragmatism of the method (Scheme 3). The unique power of this ruthenium-catalyzed C–H functionalization strategy is illustrated by the late-stage diversification of the diene 5gh, to a very reactive Michael acceptor 9 (conventional route for preparation of 9 requires in situ oxidation of α-hydroxyketones using 10 equiv. MnO2 followed by the Wittig reaction, which generates a superstoichiometric amount of phosphine waste)67,68via selective hydrolysis of the acetate group, which is useful in the synthesis of ester-thiol 10,69 cyclohexenone 11 and polysubstituted piperidine 12 (ref. 70) (Scheme 4). Thus the Micheal acceptor 9 on reaction with thiophenol generated compound 10 in excellent yield and high regioselectivity. On the other hand compound 9 on reaction with heptanal in the presence of Hayashi–Jørgensen''s catalyst afforded the Michael adduct 13 in 72% yield and excellent diastereoselectivity. Keto-aldehyde 13 was converted to highly substituted cyclohexenone 11 and piperidine 12.Open in a separate windowScheme 3Application to the Diels–Alder reaction.Open in a separate windowScheme 4Application to the organocatalytic Michael addition reaction.The potential of this Ru-catalysed reaction was further demonstrated by norpyrenophorin synthesis.71–74 Norpyrenophorin 14 is a synthetic 16-membered lactone which has essentially the same physiological activity as the natural fungicide pyrenophorin 15 and the antibiotic vermiculin 16.73 A brief retrosynthetic analysis revealed that the dimeric macrocycle 14 could be dissected into monomer 17 which could be easily accessed from oxidative coupling of 2a with 18 using the C–H activation reaction (Scheme 5). Ruthenium catalysed oxidative coupling of symmetric allylester 18 with 2a generated the key intermediate 19 in 32% yield. Selective hydrolysis of acetyl enolate 19 was accomplished by the treatment with K2CO3 in methanol to provide 20 in 70% yield. In accordance with some previously reported studies, the active ketone functionality of 20 was protected as ketal by treatment with ethylene glycol in refluxing benzene to afford substrate 21. Selective hydrolysis of acetate was achieved using Bu2SnO to generate alcohol 22 and finally, aluminium–selenium adduct mediated72 ring closing lactonization followed by deketalization ensured the completion of synthesis of 14 in 23% yield (two steps) (Scheme 6). A similar type of dimerization reaction could be envisioned to synthesize the natural products pyrenophorin 15 and vermiculin 16.Open in a separate windowScheme 5Retrosynthetic analysis of norpyrenophorin.Open in a separate windowScheme 6Synthesis of norpyrenophorin.Based on the above result and previous report, a plausible mechanism for this oxidative coupling reaction is depicted in Scheme 7. The catalytic cycle is initiated by substrate 4g coordination to in situ generated reactive cationic ruthenium complex [Ru(OAc)L]+ A, followed by weakly coordinating ester group directed C–H activation of allyl ester to give a π-allyl ruthenium intermediate C, which again would undergo isomerization to produce intermediate D. In the case of allyl silanes, an α-silyl effect might play an important role for the isomerisation of allylsilanes to vinylsilanes via the silylated allyl anion.56 Regioselective C–H activation of in situ generated vinyl acetate would give intermediate E. Induction of stability to the carbon–metal bond by the silyl group favours regioselective C–H insertion in the case of vinyl silanes.57 Coordination followed by 1,4-addition of vinyl ruthenium species to the activated olefins (acrylate, 2a) would generate intermediate G, which would further undergo β-hydride elimination to provide a single isomer of 1,3-diene H and intermediate I could undergo reductive elimination followed by reoxidation of in situ forming Ru(0) species in the presence of Cu(OAc)2 to regenerate the reactive ruthenium(ii) complex A for the next catalytic cycle.Open in a separate windowScheme 7Plausible reaction mechanism.  相似文献   

10.
Metallosurfactants are molecular compounds which combine the unique features of amphiphiles, like their capability of self-organization, with the peculiar properties of metal complexes like magnetism and a rich redox chemistry. Considering the high relevance of surfactants in industry and science, amphiphiles that change their properties on applying an external trigger are highly desirable. A special feature of the surfactant reported here, 1-(Z)-heptenyl-1′-dimethylammonium-methyl-(3-sulfopropyl)ferrocene (6), is that the redox-active ferrocene constituent is in a gemini-position. Oxidation to 6+ induces a drastic change of the surfactant''s properties accompanied by the emergence of paramagnetism. The effects of an external magnetic field on vesicles formed by 6+ and the associated dynamics were monitored in situ using a custom-made optical birefringence and dual dynamic light scattering setup. This allowed us to observe the optical anisotropy as well as the anisotropy of the diffusion coefficient and revealed the field-induced formation of oriented string-of-pearls-like aggregates and their delayed disappearance after the field is switched off.

The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.

Amphiphiles (or surfactants) combine hydrophilic (the so-called headgroups) and lipophilic entities (the so-called tails) as integral parts of their molecular structures. This particular construction principle provides them with the ability to display concentration-dependent self-organization in nonpolar and polar solvents.1 Amphiphiles with advanced functions that go far beyond the traditional ones as emulsifiers, stabilizing agents for interfaces, or detergents were meanwhile realized by skillful manipulation of any of its constituents.2–4 Recent examples are micellar LEDs,5,6 catalysts,7–9 or batteries.10 Such applications are important hallmarks on the way to even more sophisticated amphiphiles such as the ones found in nature, e.g. in the pockets of enzymes.11–18 An important milestone is the advent of (multi-) stimuli-responsive amphiphiles, whose encoded functionalities respond to (different) external triggers. Such systems are capable of adaptive self-assembly, which can be controlled using an external input such as the pH, temperature, ionic strength, or redox state.19–26Paramagnetic amphiphiles, recently reviewed by Eastoe and coworkers, constitute a fascinating family of stimuli-responsive surfactants.27 Particular attention has been paid to magnetic ionic liquids based on amphiphilic transition metal complexes, as their properties are often superior to those of conventional magnetic fluids (ferrofluids).28–31 Self-assembly results in high effective concentrations of the paramagnetic metal centers, and this in turn allows us to control their physico-chemical properties and the morphologies of their superstructures through an external magnetic field. Such a scheme has the added advantage that the external stimulus is non-invasive. In many current realizations of such systems, however, the magneto-active (transition) metal ion is only present as a constituent of the counterion of a cationic surfactant, but is not an integral constituent of the surfactant itself.21,30,31Some of us have previously reported redox-switchable as well as paramagnetic stimuli-responsive amphiphiles of relevance to the current work.32,33 We thought that ferrocene would be an ideal building block in order to combine both these kinds of stimuli within one single amphiphile.34–37 On oxidation, the diamagnetic, hydrophobic ferrocene nucleus is transformed into a paramagnetic S = 1/2 ferrocenium ion with a distinct hydrophilic character.38–41 Oxidation does hence not only generate a magnetic moment, but also transfers the ferrocene nucleus from the lipo- to the hydrophilic part of the amphiphile, thereby changing its entire structure. A 1,1′-disubstitution pattern of the ferrocene scaffold, which is synthetically well accessible,34,42–44 seemed particularly suited for such an endeavor.Studies on paramagnetic amphiphiles are often thwarted by the non-trivial analytics involved in their characterization. Detailed investigations often rely on small-angle neutron scattering (SANS), which is time-consuming and costly and suffers from poor availability.27,30,31,45–47 Moreover, SANS is only of limited value for following kinetically fast processes which would be desirable for the live monitoring of structural changes occurring in solution. Optical birefringence is a well-established method to monitor the dynamic response of materials to external fields.48–50 Although of high intrinsic value, optical birefringence measurements in magnetic fields were only rarely applied for the study of paramagnetic amphiphiles.29We here report the zwitterionic, ferrocene-based amphiphile FcNMe2SO3Heptene 6 (see Fig. 1, Fc = ferrocenyl) with a sultone headgroup. Compound 6 is unique in that its self-assembly properties can be controlled by three different external stimuli, namely the (i) addition of an electrolyte, (ii) addition of an oxidant/reductant, and (iii) exposure to an external magnetic field. We also demonstrate that optical birefringence in combination with dynamic light scattering (DLS) measurements in two orthogonal directions provides detailed insights into the functional response of aggregated magnetic nanoparticles formed by 6+ to an external magnetic field in real time. Specifically, we have observed the formation of string-of-pearls-like aggregates of 6+ in a magnetic field (0.8 T), the field-induced anisotropy of the diffusion of aggregated nanoparticles, and a hysteresis effect for their disappearance after the magnetic field is switched off. Thus, the anisotropy of larger aggregates persists for more than 5 min, while the structural alignment of smaller ones vanishes at a significantly faster rate.Open in a separate windowFig. 1Synthesis of FcNMe2SO3Heptene (6). (a) Synthesis of 6; (b) molecular structure of 6 crystallized from acetonitrile. C; dark grey, N; turquoise, Fe; orange, S; yellow, O; red, H atoms are omitted for clarity.  相似文献   

11.
12.
Brønsted acid catalyzed formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloadditions of donor–acceptor cyclobutenes, cyclopropenes, and siloxyalkynes with benzopyrylium ions are reported. [4 + 2]-cyclization/deMayo-type ring-extension cascade processes produce highly functionalized benzocyclooctatrienes, benzocycloheptatrienes, and 2-naphthols in good to excellent yields and selectivities. Moreover, the optical purity of reactant donor–acceptor cyclobutenes is fully retained during the cascade. The 1,3-dicarbonyl product framework of the reaction products provides opportunities for salen-type ligand syntheses and the construction of fused pyrazoles and isoxazoles that reveal a novel rotamer-diastereoisomerism.

Brønsted acid catalysis realizes formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloadditions of donor–acceptor cyclobutenes, cyclopropanes, and siloxyalkynes with benzopyrylium ions.

Medium-sized rings are the core skeletons of many natural products and bioactive molecules,1 and a growing number of strategies have been developed for their synthesis.2 Because of their enthalpic and entropic advantages, ring expansion is a highly efficient methodology for these constructions.3–6 For example, Sun and co-workers have developed acid promoted ring extensions of oxetenium and azetidinium species formed from siloxyalkynes with cyclic acetals and hemiaminals (Scheme 1a).4 Takasu and co-workers have reported an elegant ring expansion with a palladium(ii) catalyzed 4π-electrocyclic ring-opening/Heck arylation cascade with fused cyclobutenes (Scheme 1b).5 Each transformation is initiated by the formation of fused bicyclic units followed by ring expansion or rearrangement to give medium-sized rings.Open in a separate windowScheme 1Cycloaddition/ring expansion background and this work.Strategies for the formation of fused bicyclic compounds rely on cycloaddition of dienes or dipoles with unsaturated cyclic compounds7 and, if the reactant cyclic compound is strained and chiral, the resulting bicyclic compound is activated toward ring opening that results in retention of chirality. We have recently reported access to donor–acceptor cycloalkenes by [3 + n] cycloaddition that have the prerequisites of unsaturated cyclic compounds suitable for cycloaddition.8 Donor–acceptor (D–A) cyclopropenes9 and cyclobutenes10 have sufficient strain in the resulting bicyclic compounds to undergo ring opening. We envision that the selection of a diene or dipolar reactant and suitable reaction conditions could realize cycloaddition and subsequent ring expansion. Benzopyrylium species,11,12 which are generated by metal or acid catalysis, have attracted our attention. We anticipated that their high reactivity would overcome the conventional unfavorable kinetic and/or thermodynamic factors that typically impede medium-sized ring formation. From a mechanistic perspective, benzopyrylium species are often formed by transition metal catalyzed reactions with 2-alkynylbenzaldehydes.11 Recently, the reaction between 1H-isochromene acetal and Brønsted acid catalyst forms the 2-benzopyrylium salts that could react with functional alkenes to give same cycloaddition products.12 Consequently, we believed that the [4 + 2]-cyclization between benzopyrylium species and donor–acceptor cyclobutenes, cyclopropenes, or siloxyalkynes would give bridged oxetenium intermediates, which contain high strain energy that should provide the driving force for ring expansion. The “push and pull” electronic effect of donor–acceptor functional groups facilitates deMayo-type ring-opening of the cyclobutane or cyclopropane skeletons (Scheme 1c).13Here we report bis(trifluoromethanesulfonyl)imide (HNTf2) catalyzed formal [4 + 4]-, [4 + 3]- and [4 + 2]-cycloaddition reactions of D–A cyclobutenes, cyclopropenes, and siloxyalkynes with benzopyrylium salts. Polysubstituted benzo-cyclooctatrienes, benzocycloheptatrienes and 2-naphthols, are produced in good to excellent yields and selectivities. Complete retention of configuration occurs using chiral cyclobutenes, and opportunities for further functionalization are built into these constructions.Initially, we conducted transition metal catalyzed reactions with 2-alkynylbenzaldehyde intending to produce the corresponding benzopyrylium ion and explore the possibility of cycloaddition/ring opening with donor–acceptor cyclobutene 2a. Use of Ph3PAuCl/AgSbF6, Pd(OAc)2 and Cu(OTf)2, which were efficient catalysts in previous transformations,11 gave only a trace amount of cycloaddition product (Fig. 1). Spectral analysis showed that mostly starting material remained (Fig. 1-i and ii). Increasing the reaction temperature led only to decomposition of 2-alkynylbenzaldehyde (Fig. 1-iv) or donor–acceptor cyclobutene 2a (Fig. 1-iv).Open in a separate windowFig. 1Reaction of 2-alkynylbenzaldehyde with donor–acceptor cyclobutene 2a.From these disappointments we turned our attention to 1H-isochromene acetal 1a as the benzopyrylium ion precursor. Various Lewis acid catalysts were employed with limited success, but we were pleased to observe the formation of the desired formal [4 + 4]-cycloaddition benzocyclooctatriene product 3aa, albeit in low yields (Table 1, entries 1–6). Selection of the Brønsted super acid HNTf2 (ref. 14) proved to be the most promising, producing 3aa in 40% yield (Table 1, entry 7). Increasing the amount of D–A cyclobutene 2a by 30% gave a much higher yield of 3aa (Table 1, entry 8 vs. 7). Optimization of the stoichiometric reaction between 1a and 2a by increasing the reaction temperature from rt to 35 °C led to the formation of the desired product in 76% isolated yield (Table 1, entry 9 vs. 8). However, a further increase in the reaction temperature (Table 1, entry 10) or reducing the catalyst loading to 5 mol% did not improve the yield of 3aa (Table 1, entry 11).Optimization of reaction conditionsa
EntryCat (10 mol%)Temp. (°C)Yieldb
1Sc(OTf)3rt23
2Yb(OTf)3rtTrace
3In(OTf)3rt16
4TiCl4rtTrace
5BF3·OEt2rt20
6TMSOTfrt17
7HNTf2rt40
8cHNTf2rt67
9cHNTf23578(76)d
10c,eHNTf26062
11c,fHNTf23550
Open in a separate windowaReactions were performed by adding the catalyst (10 mol%) to 1a (0.1 mmol) and 2a (0.1 mmol) in CH2Cl2 (2 mL) at the corresponding temperature for 24 h.bYields were determined by 1H NMR spectroscopic analysis with CH2Br2 as the internal standard.c1.3 equiv. 2a was used.dIsolated yield.eReaction performed at 60 °C for 12 h.f5 mol% catalyst loading.With optimized conditions using 1a in hand, we examined the scope of the formal [4 + 4]-cycloaddition reactions of D–A cyclobutenes 2 with a diverse set of acetal compounds 1. As shown in Scheme 2, a wide range of acetal substrates (1a–1i) with different substituents at different positions all reacted smoothly with D–A cyclobutene 2a to form the corresponding benzocyclooctatriene products 3 in good to excellent yields. Structural variations in the acetals produced only modest changes in product yields which ranged from 55 to 87%. Similarly, both electron-withdrawing and electron-donating substituents at the 4-position of the cyclobutene phenyl ring produced the corresponding products (3db–3dd) in good yields, and 2-naphthyl (2e) and 2-thienyl (2f) substituted cyclobutenes were suitable substrates (85% and 51% product yields, respectively). trans-1,2,3,4-Tetrasubstituted (R2 = CH3) 2-sil-oxycyclobutenecarboxylate 2g also underwent [4 + 4]-cycloaddition with 1d in good yield and fully retained its diastereoselectivity. The structure of 3fa was confirmed by X-ray diffraction (Scheme 2).15Open in a separate windowScheme 2Scope of the [4 + 4]-cycloaddition reaction of D–A cyclobutenes and 1H-isochromene acetals.a aReactions were performed by adding HNTf2 (10 mol%) to 1 (0.1 mmol) and 2 (0.13 mmol) in CH2Cl2 (2 mL) at 35 °C for 24 h. Isolated yields are reported.Chiral donor–acceptor cyclobutenes with high enantiomeric excess and diastereoselectivity are conveniently obtained by catalytic [3 + 1]-cycloaddition of enoldiazoacetates with acyl ylides of sulfur.10 To determine if optical purity is retained, chiral D–A cyclobutene 2a (80% ee) was reacted with 1d under the optimized conditions, and the corresponding benzocyclo-octatriene product 3da was obtained in good yield with complete retention of configuration (Scheme 3, eqn (1)). With trans-disubstituted 2g and 2h that have higher optical purity, however, 3dg and 3dh were obtained in moderate yields with full retention of diastereo- and enantioselectivities, but addition products 8dg and 8dh were formed competitively (Scheme 3, eqn (2)). These compounds resulted from initial addition then desilylation, indicating that the [4 + 2]-cyclization is a stepwise reaction. Attempts to suppress the competing pathway by changing solvents or using the isopropyl acetal substrate to form a bulky 2-propanol nucleophile (1j) failed (for details, see ESI). However, p-methoxy (R1) substituted 1g that would stabilize the incipient benzopyrylium ion gave higher selectivity (4 : 1 vs. 2 : 1), and the desired [4 + 4] cycloaddition product 3gg was isolated in 50% yield with 97% ee and >19 : 1 dr (Scheme 3, eqn (3)).Open in a separate windowScheme 3Stereochemical features of the [4 + 4]-cycloaddition of D–A cyclobutenes and 1H-isochromene acetals.a aReactions were performed by adding HNTf2 (10 mol%) to 1 (0.1 mmol) and 2 (0.13 mmol) in CH2Cl2 (2 mL) at 35 °C for 24 h. Isolated yields are reported.To further expand the generality of this strategy, we investigated its use with donor–acceptor cyclopropenes 4. The desired formal [4 + 3]-cycloaddition products 5 were obtained in good to excellent yields (Scheme 4). Optimized conditions used 20 mol% HNTf2 catalyst with 4 Å molecular sieves at room temperature for 2 h. The scope of this [4 + 3]-cycloaddition reaction with cyclopropenes 4 showed that acetals bearing both electron-donating and electron-withdrawing substituents on the aromatic ring were tolerated. However, as with [4 + 4]-cycloaddition reactions, the [4 + 3] reactions of 1 with R1 = alkyl or H did not produce any of the desired products. Furthermore, 3-substituted cyclopropenes 4b–4d participated in this reaction, and their products (5ab–5ad) were obtained in 63%–81% yields.Open in a separate windowScheme 4Scope of the [4 + 3]-cycloaddition reaction of D–A cyclopropenes and 1H-isochromene acetals.a aReactions were performed by adding HNTf2 (20 mol%) to 1 (0.2 mmol), 4 (0.24 mmol) and 4 Å (50 mg) in CH2Cl2 (2 mL) at rt for 2 h. Isolated yields are reported.Siloxyalkynes 6, as electron-rich alkynes, have been widely used in diverse cyclization reaction.4,16 We expected that 6 could also participate in [4 + 2]-cyclization/ring-expansion cascade processes, giving substituted 2-naphthol products. Interestingly, substituent controlled diverse products were obtained in good to excellent reactivity and selectivity (Scheme 5). Aryl (R1) substituted acetals (1a–1d, 1f, 1h, 1i) reacted with siloxyalkynes 6a–6d, giving 2-naphthols (7aa–7ad and 7ba–7ia) in 35%–96% yields. With electron-donating group (EDG) substituents (7ba and 7ca) on the aromatic ring, higher reactivity was observed relative to those with electron-withdrawing groups (7da–7ia). In addition, the acetal with R1 = H (1m) reacted with siloxyalkynes 6 to form the 2-naphthol-1-carboxaldehyde derivative in good yield, and the structure of 7ma was confirmed by X-ray diffraction (Scheme 5b).15 Intriguingly, the n-butyl (R1) substituted acetal 1n reacted with siloxyalkynes via a [4 + 2]-cyclization with loss of methyl pentanoate (BuCO2CH3), affording siloxy naphthalenes 7na–7nd that are important precursors to the widely used axially chiral 2,2′-binols.17 The substrate scope of siloxyalkynes 6 for their formal [4 + 2]-cycloaddition reaction with n-butyl substituted acetal 1n was also explored (Scheme 5c). In all cases methyl pentanoate was eliminated to form 2,3-disubstituted naphthalene products (7na–7nd). Alkyl substituted siloxyalkynes (6a–6c) showed higher reactivity compared with phenyl substituted siloxyalkynes 6d. It should be mentioned that, recently, a similar transformation using BF3·OEt2 as catalyst or in excess (2 equiv.) with 2,4,6-collidine (1 equiv.) was reported,18 and HNTf2 was stated to be much less effective. To clarify this discrepancy, we carefully repeated these transformations (7ma and 7na) and found that all starting materials are completely consumed in less than 10 min to deliver [4 + 2]-cycloaddition products in good yields. Prolonging the reaction time to 12 hours, which was the reaction time used by the authors, results in their decomposition to a complex mixture of materials.Open in a separate windowScheme 5Scope of the [4 + 2]-cycloaddition reaction of siloxyalkynes and 1H-isochromene acetals.a aReactions were performed by adding HNTf2 (10–30 mol%) to 1 (0.2 mmol) and 6 (0.3–0.4 mmol) in CH2Cl2 (2 mL) at rt for 10 min. Isolated yields are reported. b40 mol% HNTf2 catalyst was used.To illustrate the utility of this process, a large scale catalytic [4 + 4] cycloaddition was performed, and adduct 3da was obtained in 87% yield. Further transformations were conducted for the synthesis of pyrazole and isoxazole structures based on its 1,3-dicarbonyl skeleton (Fig. 2a). Compound 3da reacted with hydrazine and hydroxylamine in refluxed ethanol, affording pyrazole 14da and isoxazole 15da in 89% yield or 66% yield, respectively. The structure of 15da was confirmed by X-ray diffraction.15 Interestingly, two NMR distinguishable interconvertible diastereoisomers were detected for each of these eight-membered cyclic products (2.5 : 1 and 5 : 1 dr for 14da and 15da, respectively, in CDCl3). These diastereoisomers are rotamers (for details, see ESI) that exist at equilibrium with each other in solution but form one crystalline product (X-ray structure of 15da). In addition, the cycloaddition product 7ma reacted with chiral 1,2-cyclohexanediamine and 1,2-diphenylethylenediamine to give salen-type ligands L1 and L2 in 53% yield and 74% yield, respectively, which provides new opportunities for ligand screening (Fig. 2b).19Open in a separate windowFig. 2Large scale reaction, further transformations, and ligands synthesis.In the mechanistic possibility considered for these HNTf2 catalyzed cycloaddition reactions (Fig. 3), protonation of acetal 1 with HNTf2 gives the corresponding highly reactive benzopyrylium intermediate int-I, which reacts with donor–acceptor cyclobutenes 2, cyclopropenes 4, or siloxyalkynes 6 affording addition intermediates int-II that undergo ring closure to int-III. Ring expansion then occurs to deliver 3, 5 and 7 in good to excellent yields with fully retained stereoselectivities. Furthermore, the formed TIPSNTf2 ([4 + 4]- and [4 + 3]-cycloaddition) or HNTf2 {[4 + 2] cycloaddition} are active acid catalysts for the conversion of 1 to benzopyrylium intermediate int-I that continues the catalytic cycle. With sterically larger D–A cyclobutenes or when a less ring-strained benzocyclopentene 12 is employed (for details, see ESI), the competing direct desilylation of int-II occurs, delivering addition byproducts 8 or 13. Compounds 7na–7nd arise from the analog to int-III from which ketene formation or methanol displacement effects 1,4-elimination.Open in a separate windowFig. 3Proposed mechanism.  相似文献   

13.
The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6–7 steps using an easily accessible meso-cyclohexadienone derivative. The [6,6]-bicyclic decalin B–C ring and the all-carbon quaternary stereocenter at C-6 were prepared via a desymmetric intramolecular Michael reaction with up to 97% ee. The naphthalene diol D–E ring was constructed through a sequence of Ti(Oi-Pr)4-promoted photoenolization/Diels–Alder, dehydration, and aromatization reactions. This asymmetric strategy provides a scalable route to prepare target molecules and their derivatives for further biological studies.

The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6–7 steps using an easily accessible meso-cyclohexadienone derivative.

Various halenaquinone-type natural products with promising biological activity have been isolated from marine sponges of the genus Xestospongia1 from the Pacific Ocean. (+)-Halenaquinone (1),2,3 (+)-xestoquinone (2), and (+)-adociaquinones A (3) and B (4)4,5 bearing a naphtha[1,8-bc]furan core (Fig. 1) are the most typical representatives of this family. Naturally occurring (−)-xestosaprol N (5) and O (6)6,7 have the same structure as 3 and 4 except for a furan ring, while a naphtha[1,8-bc]furan core can also be found in fungus-isolated furanosteroids (−)-viridin (7) and (+)-nodulisporiviridin E (8)8,9 (Fig. 1). Halenaquinone (1) was first isolated from the tropical marine sponge Xestospongia exigua2 and it shows antibiotic activity against Staphylococcus aureus and Bacillus subtilis. Xestoquinone (2) and adociaquinones A (3) and B (4) were firstly isolated, respectively, from the Okinawan marine sponge Xestospongia sp.4a and the Truk Lagoon sponge Adocia sp.,4b and they show cardiotonic,4a,c cytotoxic,4b,i antifungal,4i antimalarial,4j and antitumor4l activities. These compounds inhibit the activity of pp60v-src protein tyrosine kinase,4d topoisomerases I4e and II,4f myosin Ca2+ ATPase,4c,g and phosphatases Cdc25B, MKP-1, and MKP-3.4h,kOpen in a separate windowFig. 1Structure of halenaquinone-type natural products and viridin-type furanosteroids.Owing to their diverse bioactivities, the synthesis of this family of natural compounds has been extensively studied, with published pathways making use of Diels–Alder,3a,d,e,5ac,e,g furan ring transfer,5b Heck,3b,c,5f,7,9b,d palladium-catalyzed polyene cyclization,5d Pd-catalyzed oxidative cyclization,3f and hydrogen atom transfer (HAT) radical cyclization9c reactions. In this study, we report the asymmetric total synthesis of (+)-xestoquinone (2), (−)-xestoquinone (2′), and (+)-adociaquinones A (3) and B (4) (Fig. 1).The construction of the fused tetracyclic B–C–D–E skeleton and the all carbon quaternary stereocenter at C-6 is a major challenge towards the total synthesis of xestoquinone (2) and adociaquinones A (3) and B (4). Based on our retrosynthetic analysis (Scheme 1), the all-carbon quaternary carbon center at C-6 of cis-decalin 12 could first be prepared stereoselectively from the achiral aldehyde 13via an organocatalytic desymmetric intramolecular Michael reaction.10,11 The tetracyclic framework 10 could then be formed via a Ti(Oi-Pr)4-promoted photoenolization/Diels–Alder (PEDA) reaction12–16 of 11 and enone 12. Acid-mediated cyclization of 10 followed by oxidation state adjustment could be subsequently applied to form the furan ring A of xestoquinone (2). Finally, based on the biosynthetic pathway of (+)-xestoquinone (2)4b,5c and our previous studies,7 the heterocyclic ring F of adociaquinones A (3) and B (4) could be prepared from 2via a late-stage cyclization with hypotaurine (9).Open in a separate windowScheme 1Retrosynthetic analysis of (+)-xestoquinone and (+)-adociaquinones A and B.The catalytic enantioselective desymmetrization of meso compounds has been used as a powerful strategy to generate enantioenriched molecules bearing all-carbon quaternary stereocenters.10,11 For instance, two types of asymmetric intramolecular Michael reactions were developed using a cysteine-derived chiral amine as an organocatalyst by Hayashi and co-workers,11a,b while a desymmetrizing secondary amine-catalyzed asymmetric intramolecular Michael addition was later reported by Gaunt and co-workers to produce enantioenriched decalin structures.11c Prompted by these pioneering studies and following the suggested retrosynthetic pathway (Scheme 1), we first screened conditions for organocatalytic desymmetric intramolecular Michael addition of meso-cyclohexadienone 13 (Table 1) in order to form the desired quaternary stereocenter at C-6. Compound 13 was easily prepared on a gram scale via a four-step process (see details in the ESI).Attempts of organocatalytic desymmetric intramolecular Michael additiona
EntryCat. (equiv.)Additive (equiv.)SolventTimeYield/d.r. at C2be.e.c
1(R)-cat.I (0.5)Toluene10.0 h52%/10.3 : 1 14a: 96%; 14b: 75%
2(R)-cat.I (1.0)Toluene4.0 h60%/10.0 : 1 14a: 93%; 14b: 75%
3(R)-cat.I (1.0)MeOH4.0 h47%/5.5 : 1 14a: 86%; 14b: −3%
4(R)-cat.I (1.0)DCM10.0 h28%/24.0 : 1 14a: 91%; 14b: 7%
5(R)-cat.I (1.0)Et2O10.0 h22%/22.0 : 1 14a: 91%; 14b: 65%
6(R)-cat.I (1.0)MeCN10.0 h12%/2.6 : 1 14a: 90%; 14b: 62%
7(R)-cat.I (1.0)Toluene/MeOH (2 : 1)4.0 h47%/10.0 : 1 14a: 87%; 14b: −38%
8d(R)-cat.I (1.0)AcOH (5.0)Toluene4.0 h60%e/2.1 : 1 14a: 96%; 14b: 95%
9d(R)-cat.I (0.5)AcOH (2.0)Toluene6.0 h75%e/4.0 : 1 14a: 97%; 14b: 91%
10d(R)-cat.I (0.5)AcOH (0.2)Toluene6.0 h73%e/4.3 : 1 14a: 96%; 14b: 92%
11f(R)-cat.I (0.5)AcOH (0.2)Toluene6.0 h75%e/8.0 : 1g 14a: 95%; 14b: 93%
12h(R)-cat.I (0.2)AcOH (0.2)Toluene9.0 h80%i/6.0 : 1j 14a: 97%; 14b: 91%
Open in a separate windowaAll reactions were performed using 13 (5.8 mg, 0.03 mmol, 1.0 equiv., and 0.1 M) and a catalyst at room temperature in analytical-grade solvents, unless otherwise noted.bThe yields and diastereoisomeric ratios (d.r.) were determined from the crude 1H NMR spectrum of 14 using CH2Br2 as an internal standard, unless otherwise noted.cThe enantiomeric excess (e.e.) values were determined by chiral high-performance liquid chromatography (Chiralpak IG-H).dCompound 13: 9.6 mg, 0.05 mmol, and 0.1 M.eIsolated combined yield of 14a + 14b.fCompound 13: 192 mg, 1.0 mmol, and 0.1 M.gThe d.r. values decreased to 1 : 1 after purification by silica gel column chromatography.hCompound 13: 1.31 g, 6.82 mmol, and 0.1 M.iIsolated combined yield of 12a + 12b.jThe d.r. values were determined from the crude 1H NMR spectrum of 12 obtained from the one-pot process.We initially investigated the desymmetric intramolecular Michael addition of 13 using (S)-Hayashi–Jørgensen catalysts,17 and found that the absolute configuration of the obtained cis-decalin was opposite to the required stereochemistry of the natural products (see Table S1 in the ESI). In order to achieve the desired absolute configuration of the angular methyl group at C-6, (R)-cat.I was used for further screening. In the presence of this catalyst, the intramolecular Michael addition afforded 14a (96% e.e.) and 14b (75% e.e.) in a ratio of 10.3 : 1 and 52% combined yield (entry 1, Table 1). We assumed that the enantioselectivity of the reaction was controlled by the more sterically hindered aromatic group of (R)-cat.I, which protected the upper enamine face and allowed an endo-like attack by the si-face of cyclohexadienone, as shown in the transition state TS-A (Table 1). In order to increase the yield of this reaction and improve the enantioselectivity of 14b, we further screened solvents and additives. Increasing the catalyst loading from 0.5 to 1.0 equivalents and screening various reaction solvents did not improve the enantiomeric excess of 14b (entries 2–7, Table 1). Therefore, based on previous studies,11d,e we added 5.0 equivalents of acetic acid (AcOH) to a solution of compound 13 and (R)-cat.I in toluene, which improved the enantiomeric excess of 14b to 95% with a 60% combined yield (entry 8, Table 1). And, the stability of (R)-cat.I has also been verified in the presence of AcOH (see Table S2 in the ESI). Further adjustment of the (R)-cat.I and AcOH amount and ratio (entries 9–12, Table 1) indicated that 0.2 equivalents each of (R)-cat.I and AcOH were the best conditions to achieve high enantioselectivity for both 14a and 14b, and it also increased the reaction yield (entry 12, Table 1). The enantioselectivity was not affected when the optimized reaction was performed on a gram scale: 14a (97% e.e.) and 14b (91% e.e.) were obtained in 80% isolated yield (entry 12, Table 1). We also found that the gram-scale experiments needed a longer reaction time which led a slight decrease of the diastereoselectivity. The purification of the cyclized products by silica gel flash column chromatography indicated that the major product 14a was epimerized and slowly converted to the minor product 14b (entry 11, Table 1). Both 14a and 14b are useful in the syntheses because the stereogenic center at C-2 will be converted to sp2 hybridized carbon in the following transformations. Therefore, the aldehyde group of analogues 14a and 14b was directly protected with 1,3-propanediol to give the respective enones 12a and 12b for use in the subsequent PEDA reaction.Afterward, we selected the major cyclized cis-decalins 12a and 12a′ (obtained by using (S)-cat.I in desymmetric intramolecular Michael addition, see Table S1 in the ESI) as the dienophiles to prepare the tetracyclic naphthalene framework 10 through a sequence of Ti(Oi-Pr)4-promoted PEDA, dehydration, and aromatization reactions (Scheme 2). When using 3,6-dimethoxy-2-methylbenzaldehyde (11) as the precursor of diene, no reaction occurred between 12a/12a′ and 11 under UV irradiation at 366 nm in the absence of Ti(Oi-Pr)4 (Scheme 2A). In contrast, the 1,2-dihydronaphthalene compounds 16a and 16a′ were successfully synthesized when 3.0 equivalents of Ti(Oi-Pr)4 were used. Based on our previous studies,13a,e the desired hydroanthracenol 15a was probably generated through the chelated intermediate TS-B and the cycloaddition occurred through an endo direction (Scheme 2B).18 The newly formed β-hydroxyl ketone groups in 15a and 15a′ could then be dehydrated with excess Ti(Oi-Pr)4 to form enones 16a and 16a′. These results confirmed the pivotal role of Ti(Oi-Pr)4 in this PEDA reaction: it stabilized the photoenolized hydroxy-o-quinodimethanes and controlled the diastereoselectivity of the reaction.Open in a separate windowScheme 2PEDA reaction of 11 and enone 12.Subsequent aromatization of compounds 16a and 16a′ with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) at 80 °C afforded compounds 10a and 10a′ bearing a fused tetracyclic B–C–D–E skeleton. The stereochemistry and absolute configuration of 10a were confirmed by X-ray diffraction analysis of single crystals (Scheme 3). The synthesis of (+)-xestoquinone (2) and (+)-adociaquinones A (3) and B (4) was completed by forming the furan A ring. Compound 10 was oxidized using bubbling oxygen gas in the presence of t-BuOK to give the unstable diosphenol 17a, which was used without purification in the next step. The subsequent acid-promoted deprotection of the acetal group led to the formation of an aldehyde group, which reacted in situ with enol to furnish the pentacyclic compound 18 bearing the furan A ring. The stereochemistry and absolute configuration of 18 were confirmed by X-ray diffraction analysis of single crystals (Scheme 3). Further oxidation of 18 with ceric ammonium nitrate afforded (+)-xestoquinone (2) in 82% yield. Following the same reaction process, (−)-xestoquinone (2′) was also synthesized from 10a′ in order to determine in the future whether xestoquinone enantiomers differ in biological activity. Further heating of a solution of (+)-xestoquinone (2) with hypotaurine (9) at 50 °C afforded a mixture of (+)-adociaquinones A (3) (21% yield) and B (4) (63% yield). We also tried to optimize the selectivity of this condensation by tuning the reaction temperature and pH of reaction mixtures (see Table S3 in the ESI). The 1H and 13C NMR spectra, high-resolution mass spectrum, and optical rotation of synthetic (+)-xestoquinone (2), (+)-adociaquinones A (3) and B (4) were consistent with those data reported by Nakamura,4a,g Laurent,4j Schmitz,4b Harada5a,c and Keay.5dOpen in a separate windowScheme 3Total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B.  相似文献   

14.
The active site of [FeFe] hydrogenase, the H-cluster, consists of a canonical [4Fe–4S]H subcluster linked to a unique binuclear [2Fe]H subcluster containing three CO, two CN and a bridging azadithiolate (adt, NH(CH2S)2) ligand. While it is known that all five diatomic ligands are derived from tyrosine, there has been little knowledge as to the formation and installation of the adt ligand. Here, by using a combination of a cell-free in vitro maturation approach with pulse electronic paramagnetic resonance spectroscopy, we discover that serine donates the nitrogen atom and the CH2 group to the assembly of the adt ligand. More specifically, both CH2 groups in adt are sourced from the C3 methylene of serine.

The CH2NHCH2 bridgehead moiety of the [FeFe] hydrogenase H-cluster is derived from serine as revealed by isotope labeling and EPR spectroscopy.

Hydrogenases catalyze the reversible reactions of H2 oxidation and proton reduction, and are involved in many microbial metabolic pathways.1 [FeFe] hydrogenases in particular are hyper-efficient, with turnover rates up to 104/s.2 This has led to intense focus on [FeFe] hydrogenases for sustainable production of H2 and the design of fuel cells.3 The active site of [FeFe] hydrogenases is a six-iron cofactor called the H-cluster (Scheme 1), which consists of a canonical cuboid [4Fe–4S]H subcluster linked through a bridging cysteine (Cys) residue to a binuclear [2Fe]H subcluster in which the two iron ions are coordinated by three CO, two CN and an azadithiolate (adt, NH(CH2S)2) bridging ligand. The [2Fe]H subcluster has been proposed to be the site for H2 binding and hydride formation,4,5 which serves as a natural blueprint for designing small molecule catalysts for hydrogen evolution reactions.6 The unique structure and catalytic activity has thus raised much interest in the biosynthesis of the H-cluster, which poses a great challenge in cofactor assembly that involves toxic ligands, oxygen sensitivity and an organic adt ligand that has little inherent stability.Open in a separate windowScheme 1Bioassembly of the H-cluster highlighting the source of each moiety.While the [4Fe–4S]H subcluster in the H-cluster can be formed by the housekeeping gene products that are used to assemble such standard Fe–S clusters, the in vivo bioassembly of the unique [2Fe]H subcluster requires three special Fe–S “maturase” proteins: HydE, HydF, and HydG.7,8 Although the functions of HydE and HydF have not been fully elucidated,9–12 recent studies indicate that HydG is a bifunctional 4Fe–4S radical S-adenosyl-l-methionine (SAM) enzyme which lyses tyrosine to generate CO and CN and forms a [(Cys)Fe(CO)2(CN)] organometallic precursor to the H-cluster on a dangler Fe(Cys) site in HydG.13–16 More recently, by using a synthetic [(Cys)Fe(CO)2(CN)] carrier we have shown that the two sulfur atoms in the adt ligand are derived from the precursor-bound Cys, but that the CH2NHCH2 component is not.17 Taken together, the biosynthetic origins of the [Fe2S2(CO)3(CN)2] part of the [2Fe]H subcluster are depicted in Scheme 1: all five diatomic ligands are tailored from tyrosine by HydG;18 the two sulfur atoms and the two Fe atoms are from the dangler Fe(Cys) site in HydG (which can be reconstituted with Fe2+ and free Cys in solution19). Remarkably, these components are all delivered to the binuclear cluster assembly in the form of the [(Cys)Fe(CO)2(CN)] product of HydG. Given these recent advances, the only missing part of the puzzle is the crucial NH(CH2)2 moiety: what are its molecular precursors? It has been hypothesized that HydE, which is also a 4Fe–4S radical SAM enzyme, may be involved in the formation of adt, though its physiological substrate and reaction mechanism remains under investigation.9,10 As for any enzymatic reaction, knowing the actual substrate(s) for the reaction is crucial for unraveling the ultimate mechanism. Therefore, determining of molecular sourcing of the CH2NHCH2 component of the adt bridge, currently unknown, is the focus of this work.Assembly of the H-cluster in the lab can be achieved by semi-synthetic and biochemical approaches other than directly co-expressing hydA, hydE, hydF and hydG genes in cells. One very useful method alleviates the need for HydG, HydE, and in some cases, HydF, by using a synthetic [Fe2(adt)(CO)4(CN)2] complex as a direct donor to the [2Fe]H subcluster assembly.20–22 Another “cell free synthesis” approach uses HydE/F/G in an in vitro H-cluster maturation reaction developed by the Swartz group.23,24 The specific in vitro maturation reaction used in our current investigation contains a mixture of E. coli cell lysate containing separately overexpressed HydE, HydF, HydG (all from Shewanella oneidensis), apo-HydA1 (from Chlamydomonas reinhardtii) that harbors the [4Fe-4S]H subcluster, and a cocktail of low molecular weight cofactors and precursors.23 This biochemical approach gives us the opportunity to use the same set of enzymes that build the H-cluster in cells, but also enables us to determine the molecular source of each of the components in the H-cluster by using isotope-labeled cofactors/precursors, a procedure that would be very difficult to carry out and fully control in vivo. For example, by supplementing 1-13C-Tyr or 2-13C-Tyr into the in vitro maturation reaction, the CO or CN ligands to the diiron subcluster of the maturated HydA1 are respectively labeled with 13C.25,26 The presence of these 13C labels can then in turn be detected and analyzed by using advanced electron paramagnetic resonance (EPR) spectroscopy to measure the hyperfine couplings between the magnetic 13C nuclei and the unpaired electron spin distributed over the H-cluster in its redox-poised paramagnetic states. In this work, we now search for the source(s) of the CH2NHCH2 moiety by using a similar strategy of in vitro maturation coupled to high resolution EPR to screen the assembly products formed with various isotopically labeled small molecule candidates. The presence of nitrogen element in the CH2NHCH2 fragment suggests an amino acid origin as one possibility. A systematic screening by pulse EPR of the in vitro maturation products generated with 13C, 15N, and 2H-labeled amino acids reveals that serine (Ser) serves as a molecular source for the NH(CH2)2 moiety of the H-cluster.  相似文献   

15.
Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

Controlled protein functionalization holds great promise for a wide variety of applications.

Applications of protein conjugates are limitless, including imaging, diagnostics, drug delivery, and sensing.1–4 In many of these applications, it is crucial that the conjugates are homogeneous.5 The site-selectivity of the conjugation process and the number of functional labels per biomolecule, known as the degree of conjugation (DoC), are crucial parameters that define the composition of the obtained products and are often the limiting factors to achieving adequate performance of the conjugates. For instance, immuno-PCR, an extremely sensitive detection technique, requires rigorous control of the average number of oligonucleotide labels per biomolecule (its DoC) in order to achieve high sensitivity.6 In optical imaging, the performance of many super-resolution microscopy techniques is directly defined by the DoC of fluorescent tags.7 For therapeutics, an even more striking example is provided by antibody–drug conjugates, which are prescribed for the treatment of an increasing range of cancer indications.8 A growing body of evidence from clinical trials indicates that bioconjugation parameters, DoC and DoC distribution, directly influence the therapeutic index of these targeted agents and hence must be tightly controlled.9Standard bioconjugation techniques, which rely on nucleophile–electrophile reactions, result in a broad distribution of different DoC species (Fig. 1a), which have different biophysical parameters, and consequently different functional properties.10Open in a separate windowFig. 1Schematic representation of the types of protein conjugates.To address this key issue and achieve better DoC selectivity, a number of site-specific conjugation approaches have been developed (Fig. 1b). These techniques rely on protein engineering for the introduction of specific motifs (e.g., free cysteines,11 selenocysteines,12 non-natural amino acids,13,14 peptide tags recognized by specific enzymes15,16) with distinct reactivity compared to the reactivity of the amino acids present in the native protein. These motifs are used to simultaneously control the DoC (via chemo-selective reactions) and the site of payload attachment. Both parameters are known to influence the biological and biophysical parameters of the conjugates,11 but so far there has been no way of evaluating their impact separately.The influence of DoC is more straightforward, with a lower DoC allowing the minimization of the influence of payload conjugation on the properties of the protein substrate. The lowest DoC that can be achieved for an individual conjugate is 1 (corresponding to one payload attached per biomolecule). It is noteworthy that DoC 1 is often difficult to achieve through site-specific conjugation techniques due to the symmetry of many protein substrates (e.g., antibodies). Site selection is a more intricate process, which usually relies on a systematic screening of conjugation sites for some specific criteria, such as stability or reactivity.17Herein, we introduce a method of accessing an entirely new class of protein conjugates with multiple conjugation sites but strictly homogenous DoCs (Fig. 1c). To achieve this, we combined (a) iterative low conversion chemical modification, (b) process automation, and (c) bioorthogonal trans-tagging in one workflow.The method has been exemplified for protein substrates, but it is applicable to virtually any native bio-macromolecule and payload. Importantly, this method allows for the first time the disentangling of the effects of homogeneous DoC and site-specificity on conjugate properties, which is especially intriguing in the light of recent publications revealing the complexity of the interplay between payload conjugation sites and DoC for in vivo efficacy of therapeutic bioconjugates.18 Finally, it is noteworthy that this method can be readily combined with an emerging class of site-selective bioconjugation reagents to produce site-specific DoC 1 conjugates, thus further expanding their potential for biotechnology applications.19  相似文献   

16.
We report here a novel reductive radical-polar crossover reaction that is a reductive radical-initiated 1,2-C migration of 2-azido allyl alcohols enabled by an azidyl group. The reaction tolerates diverse migrating groups, such as alkyl, alkenyl, and aryl groups, allowing access to n+1 ring expansion of small to large rings. The possibility of directly using propargyl alcohols in one-pot is also described. Mechanistic studies indicated that an azidyl group is a good leaving group and provides a driving force for the 1,2-C migration.

We report here a novel reductive radical-polar crossover reaction that is a reductive radical-initiated 1,2-C migration of 2-azido allyl alcohols enabled by an azidyl group.

Since the groups of Ryu and Sonoda described the reductive radical-polar crossover (RRPCO) concept in the 1990s,1 it has attracted considerable attention in modern organic synthesis.2 By using this concept, a variety of complex molecules could be assembled in a fast step-economic fashion which is not possible using either radical or polar chemistry alone. However, only two RRPCO reaction modes are known to date: nucleophilic addition and nucleophilic substitution (Fig. 1A). The first RRPCO reaction is the nucleophilic addition of organometallic species, which is generated in situ from the reduction of a strong reducing metal with a carbon-centered radical intermediate and cations (E+ = H+, I+, Br+, path 1).3 However, the necessity for a large amount of harmful and strong reducing metals has greatly limited the scope and functional group tolerance of the reaction. Recently, photoredox catalysis has not only successfully overcome the shortcomings of using toxic strong reducing metals in the RRPCO reaction,4 but also enabled the development of several new RRPCO reaction types, including the nucleophilic addition with carbonyl compounds or carbon dioxide (path 2),5 the cyclization of alkyl halides/tosylates (path 3),6 and β-fluorine elimination (path 4).7 Although the RRPCO reaction has been greatly advanced by photoredox catalysis, it is still in its infancy, and the development of a novel RRPCO reaction is of great importance.Open in a separate windowFig. 1(A) Reductive radical-polar crossover reactions; (B) this work: reductive radical-initiated 1,2-C migration assisted by an azidyl group.Herein, we wish to report a new type of reductive radical-polar crossover cascade reaction that is the reductive radical-initiated 1,2-C migration under metal-free conditions (Fig. 1B). The development of this approach is not only to further expand the application of the RRPCO reaction, but also to solve the problems associated with the oxidative radical-initiated 1,2-C migration, such as the necessity for an oxidant and/or transition metal for the oxidative termination of the radicals, and also required sufficient ring strain to avoid the generation of epoxy byproducts.8 To realize this reaction, a driving force is needed to drive the 1,2-C migration after reductive termination, to avoid the otherwise inevitable protonation of the generated anion.9 Inspired by the leaving group-induced semipinacol rearrangement,10 we envisaged that 2-azidoallyl alcohols11 might be the ideal substrates for the reductive radical-initiated 1,2-C migration because these compounds contain both an allylic alcohol motif, which is vital for the radical-initiated 1,2-C migration, and an azidyl group, a good leaving group,12 which may facilitate the 1,2-C migration after the reductive termination of the radicals.With the optimal conditions established (ESI, Table S1), we then explored the scope of this radical-initiated 1,2-migration. As shown in Table 1, a series of naphthenic allylic alcohols could undergo n+1 ring expansion with minimal impact on the product yield (Table 1, 3aa–aq). Notably, only the alkyl groups were migrated when using benzonaphthenic allylic alcohols in the reaction. These results might be attributed to the aryl group possessing greater steric resistance. The structure of 3an was further verified by single-crystal diffraction. Interestingly, the vinyl azide derived from a pharmaceutical ethisterone was also a viable substrate, affording the migration product 3aq in 57% yield, which highlighted the applicability of this strategy in the late-stage modification of pharmaceuticals. Moreover, the acyclic allylic alcohol with an alkyl chain also successfully delivered the migration product 3ar in 64% yield.Substrate scope of 2-azidoallyl alcoholsab
Open in a separate windowaStandard reaction conditions: 1 (0.5 mmol), TMSN3 (2.0 mmol), 2a (3.0 mmol) in H2O (0.7 mL) and DMSO (1.4 mL) at 50 °C in air for 48 h.bIsolated yields.Next, we extend the reaction scope to a range of aryl allylic alcohols. In comparison with alkyl allylic alcohols, aryl allylic alcohols gave the migration products in higher yields. The structure of 3ba was unambiguously confirmed by X-ray single crystal diffraction (CCDC 1897779). As demonstrated by the arene scope (Table 1, 3ba–bl), a variety of aryl allylic alcohols, including electron-withdrawing phenyl, electron-donating phenyl, polysubstituted phenyl, and fused rings, afforded the corresponding products in moderate to high yields (67–89%). Unsurprisingly, the substrates containing electron-donating groups afforded higher yields than those containing electron-withdrawing groups.Phenols and their derivatives are important structural constituents of numerous pharmaceuticals, agrochemicals, polymers, and natural products.13 The most common method for synthesising phenols is the hydroxylation of aryl halides.14 However, the method usually requires transition metals and harsh reaction conditions. Interestingly, by using the current strategy, inexpensive and abundant cyclopentadiene moieties can also be easily converted into phenols (Table 1, 3ca–cc) in moderate to good yield. Thus, this strategy provides metal-free and mild conditions for accessing phenols.Next, we investigated the migration capabilities of different groups (Table 2). When using a substrate that contains two different alkyl groups (1da), the product with the less sterically hindered alkyl group is obtained in a higher migration ratio. A comparison of aryl groups and alkyl groups in the same allylic alcohols showed that the migration of aryl groups was more facile, and the migration ratio ranged from 1 : 4 to 1 : 1.3 (3db–dd). The results of the migration ratio of different aryl groups (3de–dh) revealed that aryl moieties with electron-donating groups possessed higher migration ratios than aryl moieties with electron-withdrawing groups.Investigation of the migration efficiency
Entry 1 R1R2Yielda (%)
3d 3d′
1 1da Me t-Bu1542
2 1db MeC6H55326
3 1dc Me4-MeOC6H55614
4 1dd Me4-CF3C6H54232
5 1de C6H54-MeC6H54240
6 1df C6H54-MeOC6H54639
7 1dg C6H54-ClC6H54144
8 1dh C6H54-CF3C6H53648
Open in a separate windowaIsolated yields.After the evaluation of the scope of our allylic alcohols, we turned our attention to sulfonyl radical precursors (Table 3). We carried out the reaction of various sodium sulfinates with allylic alcohol 1ba under standard conditions. Pleasingly, the sodium sulfinates with straight chain alkyl (3ea), cyclic alkyl (3eb), and aryl (3ec–ef) groups were all suitable for this radical-initiated 1,2-carbon migration, and afforded corresponding products in 71–91% yield.Substrate scope of sodium sulfinatesa
Open in a separate windowaIsolated yields.In this work, the 2-azidoallyl alcohols substrates were derived from propargylic alcohols through a silver-catalyzed hydroazidation of alkynes.15 Consequently, we hypothesized that the radical-initiated 1,2-carbon migration could be directly achieved from propargylic alcohols in a one pot process. With a slight modification of the reaction conditions, we realized the one-pot preparation of the desired products from propargylic alcohols (Table 4). Propargylic alcohols containing cyclic alkyl (3ag and 3ah), heterocyclic alkyl (3ak and 3al), acyclic alkyl (3ar), and aryl (3ba) groups all gave the desired migration products, although the yields were slightly lower than those from the reactions of the 2-azidoallyl alcohols. It should be noted that the ring expansion products could be directly generated from a bioactive compound, ethisterone (3aq). Performing such a reaction in a single step could greatly reduce the cost of pharmaceutical modification. The fused phenol (3cd) could also be obtained in moderate yield via the one-step reaction. In addition, the migration order of the different substituted groups (3db) was nearly identical to that observed in vinyl azide-based protocol. Furthermore, alkyl sodium sulfinates (3ea) were also well tolerated.Substrate scope of propargyl alcoholsa,b
Open in a separate windowaStandard reaction conditions: 4 (0.5 mmol), TMSN3 (2.0 mmol), 2 (3.0 mmol), Ag2CO3 (0.05 mmol) in H2O (0.7 mL) and DMSO (1.4 mL) at 50 °C in air for 48 h.bIsolated yields.To gain more insight into the mechanism of radical-initiated 1,2-carbon migration, we conducted various experiments to confirm the presence or absence of radical and carbanion intermediates (Scheme 1). When the reaction of 1ba was performed in the presence of TEMPO (6.0 equiv.), the reaction was suppressed under the standard conditions (Scheme 1, eqn (1)), supporting the involvement of a radical intermediate. To prove the formation of a carbanion intermediate, we carried out two deuterium labeling experiments (Scheme 1, eqn (2) and (3)). The resulting products [d]-3ba and MA-1 contain the deuterium atom α in the carbonyl group, confirming the formation of a carbanion intermediate. To identify the key intermediate of the 1,2-migration, we prepared a potential intermediate M1 and subjected it to the standard conditions (Scheme 1, eqn (4)). But, the product 3ba was not observed and almost all of the M1 was recovered, which indicates that M1 is not a key intermediate. However, the product 3ba was obtained in a yield of 41% while M2 was subjected to the standard conditions (eqn (5)). If the hydroxyl group in the 2-azidoallyl alcohols was protected (M3), the reaction would not give the corresponding migration product (3ga), but generate product 5 with a yield of 51% (eqn (6)).11c These results proved that the reaction involved a 1,3-H migration process thereby enabling an oxygen anion intermediate IV (other mechanistic studies are discussed in ESI Fig. S1).Open in a separate windowScheme 1Mechanistic investigations.Based on the above experimental results and relevant literature, a possible reaction pathway was proposed as shown in Fig. 2. First, TolSO2TMS (I) is generated by the anion exchange of TolSO2Na with TMSN3. Such intermediates are known to be somewhat unstable,16 as similar to the analogous compounds, such as TolSO2I,17 and TMSTePh18 and thus undergo homolysis. Therefore, we anticipated that TolSO2TMS (I) should also yield sulfonyl and trimethylsilyl radicals.19 Then the 2-azidoallyl alcohol 1ba is readily attacked by the sulfonyl radical, leading to carbon-centered radical II. Subsequently, the carbon-centered radical II undergoes single electron transfer by the oxidation of sulfinate to the sulfonyl radical yielding the carbanion III.20 A 1,3-H shift of carbanion III affords the intermediate IV21 which rapidly undergoes 1,2-migration with the assistance of the azidyl leaving group, generating the desired product. It is worth noting that the present work is a novel radical reaction mode for vinyl azides compared to the existing reports that involve N–N bond breaking in the presence of radicals. Moreover, the development of this strategy is of great significance for the application of vinyl azides in the reconstruction of C–C bonds.Open in a separate windowFig. 2Proposed mechanism.On the other hand, the coupling of sulfonyl radicals produces intermediate V.22 The azidyl anion that is generated in the reaction is more prone to attack intermediate V to afford tosyl azide.23 Subsequently, tosyl azide is reduced to p-toluenesulfonamide by the trimethylsilyl radical.24 The sideproducts tosyl azide and p-toluenesulfonamide were isolated by column chromatography, and the associated TMSOH and TMS2O have been detected by GC-MS.25  相似文献   

17.
The biosynthetic gene cluster of the antifungal metabolite sporothriolide 1 was identified from three producing ascomycetes: Hypomontagnella monticulosa MUCL 54604, H. spongiphila CLL 205 and H. submonticulosa DAOMC 242471. A transformation protocol was established, and genes encoding a fatty acid synthase subunit and a citrate synthase were simultaneously knocked out which led to loss of sporothriolide and sporochartine production. In vitro reactions showed that the sporochartines are derived from non-enzymatic Diels–Alder cycloaddition of 1 and trienylfuranol A 7 during the fermentation and extraction process. Heterologous expression of the spo genes in Aspergillus oryzae then led to the production of intermediates and shunts and delineation of a new fungal biosynthetic pathway originating in fatty acid biosynthesis. Finally, a hydrolase was revealed by in vitro studies likely contributing towards self-resistance of the producer organism.

A new family of fungal biosynthetic pathways is elucidated based on the use of fatty acid and citrate-like intermediates.

Gamma-lactone and alkyl citrate compounds derived from oxaloacetate are widespread natural products in fungi and often possess potent biological activities. Examples include sporothriolide 1,1,2 piliformic acid 2,3 tyromycin 34 and the cyclic maleidrides including byssochlamic acid 45,6 among others (Fig. 1). In some cases, for example those of 4 and squalestatin S1 5,7 detailed molecular studies have revealed that a dedicated polyketide synthase (PKS) produces a carbon skeleton that is then condensed with oxaloacetate by a citrate synthase (CS) to give an early alkyl citrate intermediate that is further oxidatively processed. In other cases, such as 1 and the sporochartines 6, the biosynthetic pathways are not yet clear.Open in a separate windowFig. 1Structures of γ-lactone and alkyl citrate metabolites from fungi. Bold bonds show oxaloacetate-derived carbons where known.Sporochartines 6a–6d8,9 from the fungus Hypoxylon monticulosum CLL 205 (now referred to as Hypomontagnella spongiphila)10 possesses potent cytotoxicity (IC50: 7.2 to 21.5 μM) vs. human cancer cell lines and are proposed to be Diels Alder (DA) adducts of the furofurandione sporothriolide 1, itself a potent antifungal agent (EC50: 11.6 ± 0.8 μM),11 and trienylfuranol A 7,12 originally obtained from an endophytic fungus Hypoxylon submonticulosum DAOMC 242471 (now referred to as Hypomontagnella submonticulosa).13 Since the biosynthesis of sporothriolide 1 and related compounds is unknown, and biological DA reactions in fungi are currently of high interest,14 we decided to examine the biosynthesis of the sporochartines 6 in the Hypomontagnella spp. strains MUCL 54604 and CLL 205 (ref. 10 and 13) in detail.  相似文献   

18.
Site-selective fluorination of aliphatic C–H bonds remains synthetically challenging. While directed C–H fluorination represents the most promising approach, the limited work conducted to date has enabled just a few functional groups as the arbiters of direction. Leveraging insights gained from both computations and experimentation, we enabled the use of the ubiquitous amine functional group as a handle for the directed C–H fluorination of Csp3–H bonds. By converting primary amines to adamantoyl-based fluoroamides, site-selective C–H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes. Computational studies revealed a unique reaction coordinate for the catalytic process and offer an explanation for the high site selectivity.

By converting primary amines to adamantoyl-based fluoroamides, site-selective C–H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes.

Due to the pervasiveness of fluorine atoms in industrially relevant small molecules, all practicing organic chemists appreciate the importance of this element. As a result of its unusual size and electronegativity, fluorine imparts unique physicochemical properties to pendant organic molecules.1 For example, the strong C–F bond can prevent biological oxidation pathways, thereby thwarting rapid clearance and potentially improving pharmacokinetics of molecules.2 Moreover, the installation of fluorine or trifluoromethyl groups, with their strong inductive effects,2 can have a profound effect on the pKa of nearby hydrogen atoms.3 These attributes, among others, have solidified the importance of fluorinated molecules in the medicinal,1–4 material,5 and agrochemical6 industries. Yet, the same unique properties that make fluorine atoms attractive chemical modifiers also make their installation difficult. Consequently, new methods for site-selective fluorine incorporation remain highly desirable.7Methods to construct Csp2–F bonds traditionally make use of the Balz–Schiemann fluorodediazonization8 and halogen exchange (“Halex” process).9 Advances in transition metal-mediated fluorination have broadened access to Csp2–F-containing molecules,10 but methods to access aliphatic fluorides remain limited. Conventional methods to make Csp3–F bonds—such as nucleophilic displacement of alkyl halides11 and deoxyfluorination12—can have limited functional group compatibility and unwanted side reactions. A more efficient route to form aliphatic C–F bonds would target the direct fluorination of Csp3–H bonds (Scheme 1).13Open in a separate windowScheme 1(a) Previous work on functional-group directed Csp3–H fluorination; (b) our approach to N-directed fluorination.Recent efforts with palladium catalysis employ conventional C–H-metallation strategies to target Csp3–H bonds for fluorination.14 Alternatively, radical H-atom abstraction can remove the transition metal from the C–H-cleavage step, thereby offering a promising approach for Csp3–H-bond functionalization.15 With undirected C–H fluorination,16 however, selectivity remains a challenge in molecules without strength-differentiated Csp3–H bonds.17 To overcome this, our group pioneered the directed fluorination of benzylic Csp3–H bonds through an iron-catalyzed process that involves 1,5 hydrogen-atom transfer (HAT) to cleave the desired Csp3–H bond.18 Since this work, other groups have demonstrated directed Csp3–H fluorination based on radical propagation that proceeds through an interrupted Hofmann–Löffler–Freytag (HLF)19 reaction (Scheme 1a). These examples employ various radical precursors such as enones,20 ketones,21 hydroperoxides,22 and carboxamides23 to direct fluorination to specific Csp3–H bonds. Since amines are ubiquitous in natural products and drugs, we sought to use amines as the building block of our directing group to achieve fluorination of unactivated Csp3–H bonds (Scheme 1b). By using amines as the starting point, one could use the approach in straightforward synthetic planning for the late-stage functionalization of remote C–H bonds.In the design phase of the project, we needed to devise a synthetically tractable N–F system that would enable 1,5-HAT and allow for fluorine transfer (Scheme 1b). To begin, we decided to examine common amine activating groups that would support 1,5-HAT while avoiding undesired radical reactions. The chosen activating group would provide the ideal steric and electronic properties to enable both N–F synthesis and N–F scission for 1,5-HAT. We first examined common acyl groups (e.g., acetyl-, benzoyl, and tosyl-based amides), but these proved unsatisfactory. For example, fluoroamide synthesis was either not achieved or low yielding, and the desired fluorine transfer proceeded with significant side reactions or returned starting material. We then turned our attention to more sterically hindered amides—which allow for higher yielding fluoroamide synthesis. For fluorine transfer, we hypothesized that the increased steric bulk could slow intermolecular H-atom transfer, thereby leading more efficient intramolecular 1,5-HAT. To that end, we were delighted that pivaloyl-based fluoroamide 1a proceeded in 64% yield to form product 2a (Scheme 2a). Interestingly, 7% of 1a underwent fluorination at the tert-butyl group of the pivaloyl—presumably through a 1,4-HAT reaction (2aa, Scheme 2a).24 The problem is further exacerbated when the pivaloyl group is homologated by one methylene—providing only 7% yield of desired 2b with 32% of the fluorination taking place on the iso-pentyl group (2bb, Scheme 2a). In an attempt to “tie back” the pivaloyl group and prevent the undesired fluorination, we employed a cyclopropylmethyl-based fluoroamide but observed no improvement.Open in a separate windowScheme 2(a) The targeted 1,5-fluorination of unactivated aliphatic C–H bonds results in partial fluorination of the amine activating group; (b) DFT studies (uM06/cc-pVTZ(-f)-LACV3P**//uM06/LACVP** level of theory) identified the competing pathways responsible for alternate fluorination; (c) DFT (uM06/cc-pVTZ(-f)-LACV3P**//uM06/LACVP** level of theory) evaluation of adamantoylamides revealed higher transition state energy for 1,4-HAT due to restricted vibrational scissoring (d) adamantoyl-activated octylamine shows no fluorination of the activating group. a 1H-NMR yield using 1,3,5-trimethoxybenzene as an internal standard. b 19F-NMR yield using 4-fluorotoluene as an internal standard.At this point, 1a proved most promising for efficient fluorine transfer, as well as being the most synthetically accessible fluoroamide. The increased steric hindrance minimizes N-sulfonylation during fluorination with NFSI, a problem that plagued the synthesis of our previously targeted fluoroamides.18 Therefore, to further investigate how to improve fluorine transfer from 1a, we decided to model H-abstraction computationally.We hypothesized that the fluorinated side product 2aa was formed after 1,4-HAT. Since 1,4-HAT is rare,24 we employed DFT (see ESI for details) to calculate the 5-membered and 6-memebered transition-states for 1,4- and 1,5-HAT, respectively. Surprisingly, we found that the barrier for 1,4 C–H abstraction in 1a was 18.7 kcal mol−1, which was only 2.6 kcal mol−1 higher in energy than the barrier calculated for 1,5 C–H abstraction in the same system (Scheme 2b). This suggested that both processes were competing at room temperature. We attributed the comparable barriers to the flexibility of the tert-butyl group, which undergoes vibrational scissoring to accommodate the C–H abstraction. The transition state distortion is modest and allows the molecule to maintain bond angles close to the ideal 109.5° (Scheme 2b). Based on this insight, we sought to limit the scissoring of the tert-butyl group and prevent the 1,4-HAT that leads to the undesired side product. After investigating several possible candidates, the underutilized adamantoyl group appeared promising. To evaluate the rigidity of adamantane, we calculated the barriers for 1,4- and 1,5-HAT for the adamantoyl-capped octylamine 1c (Scheme 2c). As expected, the barriers for 1,4- and 1,5-HAT differed significantly—with 1,4 C–H abstraction proceeding with a barrier of 25.1 kcal mol−1 and the 1,5-HAT barely changed at 16.4 kcal mol−1—an 8.7 kcal mol−1 difference. Consequently, we synthesized 1c and subjected it to the reaction conditions. Excitingly, the adamantoyl-capped system produced desired product 2c in 75% yield with no fluorination of the adamantyl group (Scheme 2d).Using the newly devised adamantoyl-based fluoroamides, the reaction conditions were optimized. While a range of metal salts, ligands, and radical initiators were evaluated, Fe(OTf)2 proved unique in catalyzing fluorine transfer with fluoroamides.18 Catalyst loading of 10 mol% allowed convenient setup and minor deviations above or below this loading had little effect on yield (see ESI). Increasing the temperature to 40 °C produced a slight increase in yield (entry 2, Table 1). Likewise, raising the temperature to 80 °C resulted in full conversion of the starting material in 20 minutes with 81% yield of the desired product (entry 3, Table 1). It should be noted that fluorine transfer occurs efficiently at a variety of temperatures with adjustments in reaction time (see ESI). Increasing the reaction concentration or changing the solvent resulted in decreased yield (entries 4 and 5, Table 1). Furthermore, the absence of Fe(OTf)2 leads to no reaction and quantitative recovery of starting material, attesting to the stability of fluoroamides and the effectiveness of Fe(OTf)2 (entry 6, Table 1).Optimization of pertinent reaction parameters
EntrySolventTemp (°C)Conc (M)TimeYielda (%)
1bDMErt0.0515 h75
2DME400.0518 h79
3 DME 80 0.05 20 min 81
4DME800.120 min73
5THE800.0520 min38
6cDME800.0520 min0
Open in a separate windowaDetermined by 1H-NMR with 1,3,5-trimethoxybenzene as an internal standard.bReaction ran inside of glovebox.cReaction ran without Fe(OTf)2.With the optimized conditions established, we evaluated the substrate scope of the reaction (Table 2). The reaction proved quite general for the fluorination of primary and secondary Csp3–H bonds (2c–l, Table 2), while tertiary Csp3–H abstraction led to greater side reactions and lower yields (2m). While all reactions resulted in complete consumption of the fluoroamide, only a singly fluorinated product is produced with the parent amide being the major side product (see ESI). The reaction proved selective for δ-fluorination even in the presence of tertiary Csp3–H bonds (e.g., 2h, 2j, and 2k), thereby demonstrating selectivity counter to C–H-bond strength. Interestingly, transannular fluorine transfer occurs with complete regioselectivity to produce 2l as the sole product. Additionally, benzylic C–H bonds can be fluorinated under these conditions (2n). The reaction also exhibits good functional group compatibility, allowing access to a variety of fluorinated motifs. In particular, the reaction proceeds in the presence of either free or protected alcohols (2o and 2p). Moreover, esters and halides are both tolerated to give fluorinated products 2q and 2r in good yield. Notably, the reaction provides access to fluorohydrin 2s—highlighting the unique ability of this methodology to access both fluorohydrins and γ-fluoroalcohols such as 2o. In addition to these examples, terminal alkene 1t works quite well giving 2t in 67% yield. Furthermore, alkene functionalizations of 2t would provide access to a diverse range of fluorinated motifs. To target difluoromethylene units with this methodology, fluoroamide 1u was prepared and subjected to the reaction conditions. Pleasingly, 2u was observed in 20% yield.Substrate scope for fluorine transfer
Open in a separate windowaIsolated yields. All reactions were run on 0.3 mmol scale unless otherwise noted.bYield reported as an average of two trials.c35 min reaction time.ddr = 1 : 3.2 when ran at room temperature for 24 h.e0.25 mmol scale.f0.18 mmol scale.g0.1 mmol scale, yield determined by 19F-NMR with 4-fluorotoluene as an internal standard.While exploring the substrate scope, we were surprised to discover that the fluoroamide N–F bond is unusually stable to a variety of common reactions. For example, fluoroamide 1o was carried through an Appel reaction, PCC oxidation, and Wittig reaction with minimal loss of the fluoroamide. With such robustness, it becomes obvious that fluoroamides could act as secondary amide protecting group—being installed and carried through a multi-step synthesis until fluorine transfer is desired. Moreover, the greater rigidity of adamantoyl-based amides relative to pivalamides offers greater stability to acid and base hydrolysis—another feature of this system. Fortunately, the amide can be cleaved using conditions reported by Charette et al. with no evidence of elimination or loss of the alkyl fluoride (see ESI).25To evaluate the differences between C–H bonds, we calculated the hypothesized minima and maxima en route to C–F bond formation for primary, secondary, and tertiary substrates (Fig. 1). To begin, we defined the start of the pathway with the fluoroamides as octahedral, high-spin Fe(OTf)2-DME complex (I).18 Ligand dissociation results in the loss of DME to form II which is 7.2 kcal mol−1 higher in energy relative to I. This ligand loss opens a coordination site that allows Fe to enter the catalytic cycle via F-abstraction from the fluoroamides. This proceeds with a barrier (II-TS) of ∼25 kcal mol−1 for all systems to form the corresponding N-based radical (III). This new N-based radical is generally about −10 kcal mol−1 from the starting materials. The 1,5-HAT proceeds through a six-membered transition state (III-TS) with 16.4, 12.6, and 9.7 kcal mol−1 barriers for primary, secondary, and tertiary substrates, respectively. This abstraction forms the corresponding C-based radicals (IV) that were −15.0, −19.9 and −22.4 kcal mol−1 relative to the starting materials for primary, secondary, and tertiary substrates, respectively. A barrierless transition allows for the abstraction of fluorine from Fe(iii)-fluoride to simultaneously furnish the products (V) and regenerate catalyst II. Interestingly, this transition seems to proceed with an intermolecular electron-transfer from the alkyl radicals to the Fe(iii) center. The overall process is highly exergonic at −53.7, −58.6, and −61.9 kcal mol−1 for primary, secondary, and tertiary substrates, respectively. We attribute the low yields for the tertiary example to rapid oxidation of the carbon radical, likely by Fe(iii), that forms a tertiary carbocation and leads to unwanted side reactions. The turnover-limiting step is the N–F abstraction by Fe (II-TS).Open in a separate windowFig. 1Computed relative Gibb''s free energies for intermediates and transition-states along the reaction pathway (uM06/cc-pVTZ(-f)-LACV3P**//uM06/LACVP** level of theory).An alternative pathway, related to the classic HLF reaction,19a,b would involve radical chain propagation. Although unlikely, we also evaluated this pathway computationally (Fig. 1). Consistent with our previous report,18 this process proceeds with an unfavorably high barrier of 30.0, 28.1, and 26.8 kcal mol−1 for primary, secondary, and tertiary substrates, respectively. Hence, this process cannot compete with the barrierless delivery of fluorine from the Fe(iii) fluoride species.In conclusion, we leveraged critical computational insights to enable the use of simple amines as a building block for the directed fluorination of C–H bonds. The reaction targets unactivated Csp3–H bonds site selectively regardless of bond strength. The reaction proceeds under mild iron catalysis that allows broad functional-group compatibility and provides access to unique fluorinated motifs. Moreover, we identified fluoroamides as surprisingly stable functional groups with likely implications for biology and materials. Mechanistic evaluation of fluorine transfer with DFT provided a detailed reaction coordinate that explains the observed reactivity. The overall reaction and mechanistic insights should provide chemists a more predictable approach to site-selective fluorination of C–H bonds.  相似文献   

19.
Sulfuric chloride is used as the source of the –SO2– group in a palladium-catalyzed three-component synthesis of sulfonamides. Suzuki–Miyaura coupling between the in situ generated sulfamoyl chlorides and boronic acids gives rise to diverse sulfonamides in moderate to high yields with excellent reaction selectivity. Although this transformation is not workable for primary amines or anilines, the results show high functional group tolerance. With the solving of the desulfonylation problem and utilization of cheap and easily accessible sulfuric chloride as the source of sulfur dioxide, redox-neutral three-component synthesis of sulfonamides is first achieved.

Sulfuric chloride is used as the source of the –SO2– group in a palladium-catalyzed three-component synthesis of sulfonamides.

Since its development in the 1970s,1 Suzuki–Miyaura coupling has become a widely used synthetic step in diverse areas. With two of the most widely sourced materials, organoborons and alkyl/aryl halides, a number of C–C coupling reactions are established and the Suzuki–Miyaura reaction has successfully acted as the key step in the synthesis of medicines and agrochemicals.2In addition to the well-known aryl halides and esters, various other substrates such as acid chlorides,3 anhydrides,4 diazonium salts5 and sulfonyl chlorides6 were also reported for the coupling in the past decades. As far as acid chlorides are concerned, carbamoyl chlorides were successfully transformed to the corresponding benzamides in the early years of the 21st century.7 However, the use of sulfamoyl chlorides as coupling partners is challenging due to the strong electron-withdrawing properties of the sulfonyl group, which cause the tendency of desulfonylation to form tertiary amines.Synthesis of sulfonyl-containing compounds, especially sulfones and sulfonamides, via the insertion of sulfur dioxide has been extensively studied during the last decade.8 A series of sulfur-containing surrogates have been developed as the source of the –SO2– group. Willis and co-workers first reported the use of DABCO·(SO2)2, a bench-stable solid adduct of DABCO and gaseous SO2 discovered by Santos and Mello,9a as the source of sulfur dioxide in the synthesis of sulfonylhydrazines.9b Soon after, alkali metal metabisulfites were found to provide sulfur dioxide for the formation of sulfonyl compounds.10 In the recent developments in this field, DABCO·(SO2)2 and metabisulfites have become the most popular SO2 surrogates for the insertion of sulfur dioxide.8 However, the practical applications of sulfur dioxide insertion reactions are limited by atom-efficiency problems and the unique properties of reactants. For instance, the three-component synthesis of aryl sulfonylhydrazines using aryl halides, SO2 surrogates and hydrazines by a SO2-doped Buchward–Hartwig reaction was realized in the earliest developments in this field.10 However, similar transformations from aryl halides and amines to the corresponding sulfonamides still remain unresolved (Scheme 1a).11,12Open in a separate windowScheme 1Synthetic approaches to sulfonamides.In order to provide a simple and efficient method for the three-component synthesis of aryl sulfonamides without the pre-synthesis of sulfonyl chlorides, many scientists have made various attempts. Interestingly, the use of arylboronic acids instead of aryl halides provided an alternative route. An oxidative reaction between boronic acids, DABCO·(SO2)2 and amines for the preparation of aryl sulfonamides at high temperature was realized,12 while reductive couplings of boronic acids, SO2 surrogates and nitroarenes were also reported (Scheme 1b).13 However, due to the reversed electronic properties of boronic acids from halides, additional additives and restrictions had to be considered. Extra oxidants and harsh conditions were usually used, and some of the transformations required “oxidative” substrates, such as nitroarenes and chloroamines.14Early in 2020, a reductive hydrosulfonamination of alkenes by sulfamoyl chlorides was reported,15 which gave us the inspiration to use in situ generated sulfamoyl chlorides as the electrophile for the synthesis of aryl sulfonamides by Suzuki–Miyaura coupling. In this way, sulfamoyl chlorides could be formed by nucleophilic substitution of an amine to sulfuric chloride, and the S(vi) central atom introduced into the reaction could reverse the electronic properties of the amine, which would eliminate the addition of oxidants (Scheme 1c). With the utilization of boronic acids as the coupling partner, a palladium-catalyzed Suzuki–Miyaura coupling could provide the sulfonamide products. Compared with traditional attempts, reversing the electronic properties of an amine from nucleophilic to electrophilic could reverse the whole reaction process, and two-step synthesis starting from the amine side could bypass the existing difficulty of S–N bond forming reductive elimination.12 Instead, a C–S bond formation could be the key for success (Scheme 2). In this proposed route, the presence of a base would be essential to remove the acid generated in situ during the reaction process. Additionally, we expected that the addition of a ligand would improve the oxidative addition of Pd(0) to sulfamoyl chloride, thus leading to the desired sulfonamide product.Open in a separate windowScheme 2Comparison between the traditional route and designed work.As designed based on our assumption, we used a commercialized sulfamoyl chloride intermediate A, which would be generated from morpholine 1a and SO2Cl2, to start our early investigations. The results showed that the direct Suzuki–Miyaura coupling of sulfamoyl chloride intermediate A and 2-naphthaleneboronic acid 2a mostly led to the generation of byproduct 3a′ with traditional phosphine ligands added to the reaction, and the desired product 3a was obtained in poor yields (Table 1, entries 1 and 2). It is known that an electron-rich ligand would enhance the oxidative addition of Pd(0) to the electrophile, and the bulky factor would facilitate the reductive elimination process. As expected, the yield of product 3a was increased significantly when electron-rich and bulky tris-(2,6-dimethoxyphenyl)phosphine was used as the ligand (Table 1, entry 3). Moreover, the reaction could proceed more efficiently by using a mixture of THF and MeCN as the co-solvent (Table 1, entry 4).Early investigations using morpholine-4-sulfonyl chloride A as the starting material
EntrySolventLigandYielda (%)
11,4-DioxanePtBu3·HBF414
2THFPtBu3·HBF423
3THFPAr3·Ar = 2,6-di-OMe–C6H357
4THF/MeCNPAr3·Ar = 2,6-di-OMe–C6H372
Open in a separate windowa 1H NMR yield obtained using 1,3,5-trimethoxybenzene as the internal standard.With that brief conclusion in hand, we then shifted our focus to the in situ generation of sulfamoyl chloride intermediate A in the reaction process, and a number of attempts were made with morpholine 1a and SO2Cl2 (for details, see the ESI). After careful measurement of product 3a and desulfonylated byproduct 3a′ generated during the transformation, the selective formation of compound 3a was realized and “standard conditions” were identified. By using PdCl2(PhCN)2 as the catalyst and Na2HPO4 as the base, the desired product 3a was isolated in 71% yield, giving the least amount of desulfonylated product 3a′ (Table 2, entry 1). The control experiment showed that 3a or 3a′ was not detected in the absence of the palladium catalyst (Table 2, entry 2). It was also observed that compound 3a′ could not be generated when SO2Cl2 was omitted (Table 2, entry 3), indicating that the byproduct wasn''t produced by the direct coupling of boronic acid and amine. Other changes to the catalyst, ligand, base or solvent all resulted in lower yields of compound 3a or higher yields of desulfonylated product 3a′ (Table 2, entries 4–7).Effects of variation of reaction parametersa
EntryVariation from “standard conditions”Yield of 3a′b (%)Yield of 3ab (%)
1None580 (69)
2No PdCl2(PhCN)2n.d.n.d.
3No SO2Cl2n.d.n.d.
4Pd(OAc)2 instead of PdCl2(PhCN)21380
5PPh3 instead of PAr31568
6K2CO3 instead of Na2HPO44323
7MeCN instead of THF/MeCN1663
Open in a separate windowaStandard conditions: morpholine 1a (0.2 mmol, 1.0 equiv.), SO2Cl2 (0.5 mmol, 2.5 equiv.), Et3N (0.53 mmol, 2.65 equiv.), 2-naphthaleneboronic acid 2a (0.4 mmol, 2.0 equiv.), Na2HPO4 (0.6 mmol, 3.0 equiv.), PdCl2(PhCN)2 (10 mol%), tris-(2,6-dimethoxyphenyl)phosphine (20 mol%), THF (1.0 mL)/MeCN (1.5 mL), 70 °C, 16 h. See the ESI for the detailed procedure.b 1H NMR yield obtained using 1,3,5-trimethoxybenzene as the internal standard. The isolated yield of entry 1 is shown in parentheses.With the “standard conditions” in hand, various secondary amines 1 and arylboronic acids 2 were subjected to the reaction for the exploration of substrate adaptability (Scheme 3). To our delight, most of the reactions proceeded smoothly, giving rise to the desired product 3 in moderate to high yields. Considering the scope of boronic acids, a number of para-, meta- and ortho-(3t) substituted boronic acids showed good reactivities. However, lower yields were observed for some substrates with electron-withdrawing substituents, providing more desulfonylated byproducts due to the electron-deficiency of the palladium intermediate. Aryl boronic acids with acid-sensitive Boc-substituted amine, oxidation-sensitive phenol, sulfide and vinyl substitution were all tolerated. It is noteworthy that bromo- and acetoxy-substrates could also be efficiently converted to the corresponding products 3f and 3r, showing quite high selectivity during the reaction process. A series of heteroaromatic products were afforded successfully as well, and compounds with indole, indazole, dibenzothiophene and pyridine were all compatible (3aa–3af).Open in a separate windowScheme 3Synthesis of sulfonamides via a palladium-catalyzed Suzuki–Miyaura coupling. Isolated yields.Subsequently, with respect to amines, 4-phenylboronic acid and 4-(methylthio)phenylboronic acid were selected as coupling partners based on their electronic properties and cost. Saturated cyclic products 3ah–3an were obtained in moderate yields, among which an α-amino acid derivative showed high reactivity, giving rise to product 3aj in 71% yield. Methylallylamine was transformed to the corresponding product 3ao smoothly, and thiomorpholine 1,1-dioxide was also tolerated under the conditions (3ap). Various sensitive groups including acetyl, Boc, Cbz and cyclopropylcarbonyl (3aq–3at) on amines remained intact during the transformation. However, the amine scope was limited, since the transformation failed to provide the corresponding products when primary amines or anilines were used as the substrates. We assumed that during the reaction process for the oxidative addition of the sulfamoyl chloride intermediate to the palladium catalyst, Pd–SO2–NHR would be formed when a primary amine was used. Thus, β-hydride elimination would occur instead of the desired process.Furthermore, the practicality of this method was also verified by gram-scale synthesis and late-stage functionalization (Scheme 4). The reaction worked smoothly on the 4.0 mmol scale, and reducing the loading amount of the palladium catalyst to 1 mol% showed no obvious impact on the transformation. With a boronic acid synthesized from estrone and desloratadine, an antihistamine drug used as the substrate, the target products 4a and 4b were achieved in moderate to good yields, showing potential possibilities for synthetic applications.Open in a separate windowScheme 4Gram-scale synthesis and late-stage functionalization.In conclusion, a redox-neutral three-component synthesis of sulfonamides is established through a palladium-catalyzed Suzuki–Miyaura coupling of sulfuric chloride, secondary amines and arylboronic acids. Sulfuric chloride is used as the source of sulfur dioxide, and the S(vi) linchpin makes the transformation possible without the assistance of oxidants. Although this transformation is not workable for primary amines or anilines, the results show high functional group tolerance and good selectivity. A clear reaction process is described, in which the in situ generated sulfamoyl chloride undergoes a palladium-catalyzed Suzuki–Miyaura reaction with boronic acids, giving rise to the corresponding sulfonamide products. Additionally, the desulfonylation problem is surmounted during the reaction process. With a boronic acid synthesized from estrone and an antihistamine drug, desloratadine, used as the substrate, the target products are achieved in moderate to good yields, showing potential possibilities for synthetic applications in organic chemistry and medicinal chemistry.  相似文献   

20.
We describe the synergistic utilization of titanocene/photoredox dual catalysis driven by visible light for the radical opening/spirocyclization of easily accessible epoxyalkynes. This environmentally benign process uses the organic donor–acceptor fluorophore 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst and Hantzsch ester (HE) as an electron donor instead of stoichiometric metallic reductants. The photocatalytic conditions showed exceptionally high reactivity for the synthesis of privileged and synthetically challenging spirocycles featuring a spiro all-carbon quaternary stereocenter. Cyclic voltammetry (CV) studies suggest that Cp2TiIIICl is the catalytically active species.

We describe the synergistic utilization of titanocene/photoredox dual catalysis driven by visible light for radical opening/spirocyclization of easily accessible epoxyalkynes.

Over the last few decades, radical-based transformations have been increasingly used in organic synthesis due to their salient features, such as ease of generation, mild reaction conditions, and broad functional group compatibility.1,2 As a mild single-electron-transfer (SET) reagent, titanocene monochloride (Cp2TiIIICl) is considered a formidable tool in contemporary radical chemistry due to its ability to promote various fundamental radical-based transformations.3–7 Cp2TiIIICl was first introduced by Nugent and RajanBabu as a very mild stoichiometric reagent for the reductive opening of epoxides.8–11 Later, the catalytic conditions developed by Gansäuer et al. (Scheme 1a)12 employing stoichiometric amounts of active metals in combination with 2,4,6-collidine·HCl further expanded its applications and led to the discovery of a number of novel transformations.13–16 The key to success was the formation of a stable complex A in reactions while decreasing the concentration of active Cp2TiIIICl.17,18 We were interested in the radical opening/cyclization reaction of epoxides which has attracted considerable attention from the synthetic community and has been used numerous times in the synthesis of natural products.19,20 Nevertheless, this reaction required stoichiometric metallic reductants and proceeded slowly particularly with sterically hindered substrates even with high catalyst loading.21 Therefore, the development of an eco-friendly and efficient catalytic system with an expanded substrate scope is highly desirable.Open in a separate windowScheme 1Cp2TiIIICl mediated radical opening/spirocyclization of epoxides; (a) generation of TiIIIvia a metal reduction approach; (b) dual titanocene/photoredox catalysis; (c) examples of drugs and natural products containing heterospirocycles.In recent years metallaphotoredox catalysis has been a new and rapidly growing research subject.22–29 Photoredox processes can directly modulate the oxidation state of metals by electron transfer (ET).30–33 Given that the generation of TiIII is a SET process, we envisioned that the reduction could be facilitated by a photoredox-controlled process while overcoming the aforementioned limitations. On the other hand, spirocycles bearing a chiral spiro all-carbon quaternary carbon are particularly attractive synthetic targets in pharmaceutical development (Scheme 1c).34–36 Such privileged rigid 3D structures offer the concomitant ability to project functionalities in all three-dimensional orientations and led to enhanced pharmacological activities of molecules. Thus significant attention has been paid to their synthesis.37,38 Against this backdrop, here we describe our efforts on the synthesis of various heterospirocycles with the aid of photoredox catalysis.We chose epoxyalkyne 2a as a model substrate for optimization of reaction conditions. After a systematic variation of different reaction parameters, we were pleased to identify the optimal reaction conditions in which a mixture of Cp2TiCl2 (5.0 mol%), [Ir(dtbbpy)(ppy)2]PF6 (1a, 1.0 mol%, EIII/II1/2 = −1.51 V vs. SCE in MeCN), HE (1.2 equiv.) and 2a (1.0 equiv.) in THF at room temperature under the irradiation of a 10 W 450 nm light emitting diode (LED) lamp for 12 hours afforded the desired product 3a in an excellent yield of 96% (13 : 1 d.r.) upon isolation (entry 1). Using a commercial 23 W compact fluorescent lamp (CFL) instead of the 10 W 450 nm LED did not compromise the overall yield of the reaction (entry 2). Notably, when the loading of Cp2TiCl2 was decreased to as low as only 2.0 mol%, the reaction still led to full conversion and produced 3a in 95% yield (entry 3). Further screening of other photosensitizers revealed that the cheap and readily obtained organic dye 4CzIPN 1b is a competent alternative, which led to full conversion with 94% isolated yield (entry 4). Importantly, the reaction did not proceed in the absence of Cp2TiCl2, HE, the photocatalyst, or visible light (entries 5–8). Various solvents, including DMF, MeOH, DMSO, and MeCN, were screened, and they all resulted in poor conversion. The use of other organic electron donors, such as triethylamine, triethanolamine, and ascorbic acid, afforded the product in poor yield.With satisfactory reaction conditions established, we then explored the scope of the cyclization reaction using 4CzIPN as the photosensitizer. Positively, the cyclization reaction worked well and afforded the desired variably heterospirocyclic products in good to excellent yield (Tables 2 and and3).3). The reaction allows the rapid construction of various 5/5, 5/6, 5/7 and 5/8 spiro-ring fused systems (3a–3k) bearing tetrahydrofuran or pyrrolidine motifs via the 5-exo cyclization pathway. Interesting, the diastereoselectivity of the cyclization reaction is highly correlated with the ring size in the substrates. Heterospirocycles containing a 5/5 spiro-ring fused system (3a–3f) were obtained with surprisingly high diastereoselectivity. In some cases (3b, 3c, and 3e) only a single isomer was obtained. The product 3d with a sterically hindered t-butyloxy carbonyl (Boc) protecting group on the N atom was obtained with reduced diastereoselectivity (5 : 1 d.r.). The diastereoselectivities dropped in 5/6, 5/7 and 5/8 spiro-ring fused systems. Given that enantioenriched epoxides could be easily obtained (e.g. via sharpless asymmetric epoxidation), this strategy provides access to optically active spirocycles featuring an all-carbon quaternary stereocenter with the transfer of stereochemical information from epoxides (3c, 3e and 3f). Bis-heterospirocyclic scaffolds were frequently employed in pharmaceutical chemistry. For example, bis-heterospirocyclic 3d is the core structure of DLK inhibitors39 and XEN402 (ref. 40) (scheme 1c), which are used for treating neurodegeneration and congenital erythromelalgia respectively. Furthermore, 6-exo cyclization was also investigated under the standard conditions and smoothly produced a serious of drug-like 6-(trifluoromethyl)-3-pyridinesulfonyl piperidine derivatives including 6/5, 6/6 and 6/7 spiro-ring fused systems (5a–5k) in generally excellent yields. Moreover, cyclization reactions with epoxy-alkynes afforded products containing exocyclic-alkenes and free alcohols which were suitable for further functionalization. This approach provides access to a broad range of novel spirocyclic piperidine and pyrrolidine spirocycles which could be of interest to synthetic and medicinal chemists.Scope of 5-exo and 6-exo cyclizationa,b,c,d
Open in a separate windowaReaction conditions: 2 and 4 (100 mg, 0.1 M in THF).bIsolated yield.c 3c, 3e and 3f were synthesized from enantiomer pure epoxides.dYields within parentheses are based on catalytic conditions using metal as a reductant: CpTi2Cl2 (5 mol%), Zn (2.0 eq.), coll·HCl (2.5 eq.), THF, 20 hours.Additive effect on Ti-catalyzed cyclizationa,b
Open in a separate windowaIn all cases, 2l was used as the substrate and the yield of 3l was determined with 1H NMR.bValues within parentheses are recovery yields of the additives determined with 1H NMR.To examine the scalability of the reaction, gram-scale synthesis of 3a and 3c was performed under the standard conditions with 23 W CFL irradiation. Pleasingly, 92% (3a) and 89% (3c) isolated yields were obtained respectively without any deterioration. Furthermore, an additive-based investigation41 was performed and the results are summarized (Table 3). From this screening, we found that 11 out of 12 additives have no adverse impact on the yield of the reaction. The additives were recovered after the reaction, including benzoxazole 6a, quinazolinone 6b, collidine 6c, tetrahydroquinoline 6d, benzothiazole 6e, indole 6f, and benzofuran 6h. However, quinoxaline 6l strongly inhibited Ti catalysis and 3l was produced in only 23% yield. Notably, the reaction is compatible with various functional groups including phenols 6g, free alcohols and alkene 6j, iodobenzene 6i, ester 3m, ether 3n, dioxolane 5i, lactone 5k, and alkyne 3e. The generality of the dual Ti/4CzIPN catalysis system was further demonstrated by a highly related hydrogen transfer reaction of epoxides which could exclusively provide anti-Markovnikov alcohols (see the ESI S8). The low-cost of 4CzIPN, broad compatibility with sensitive functional groups, and simple operation conditions are appealing for laboratory and industrial applications.Importantly, the reactions were re-subjected to metal reduction catalytic conditions for comparison with the photocatalytic conditions and the yields are shown within parentheses (Table 2d). It clearly showed that the yields were generally lower. Particularly, we found that the yields dropped dramatically as the steric encumbrance of the substrates increased. For example, substrates containing dioxolane (2g, 4i) or a 7/8-membered-ring (2j, 2k, 4j) afforded the products (3g, 5i, 3j, 3k, 5j) in less than 10% yield with the recovery of the starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号